[1] |
张遂泉. 浅谈重力在有色金属矿区的地质效果[J]. 物探与化探, 1990,14(5):393-396.
Google Scholar
|
[2] |
Zhang S Q. A rough discussion on geological effects of gravity survey in nonferrous metal districts[J]. Geophysical and Geochemical Exploration, 1990,14(5):393-396.
Google Scholar
|
[3] |
刘光鼎, 郝天珧, 刘伊克. 重磁研究对认识盆地的意义[J]. 地球物理学进展, 1996,11(2):1-15.
Google Scholar
|
[4] |
Liu G D, Hao T Y, Liu Y K. The significance of gravity and magnetic research for knowing sedimentary basins[J]. Progress in Geophysics, 1996,11(2):1-15.
Google Scholar
|
[5] |
娄德波, 宋国玺, 李楠, 等. 磁法在我国矿产预测中的应用[J]. 地球物理学进展, 2008,23(1):249-256.
Google Scholar
|
[6] |
Lou D B, Song G X, Li N, et al. The application of magnetic method in national mineral prediction[J]. Progress in Geophysics, 2008,23(1):249-256.
Google Scholar
|
[7] |
阴江宁, 肖克炎. 物探方法在矿产预测中的应用[J]. 地质学刊, 2012,36(3):333-336.
Google Scholar
|
[8] |
Yin J N, Xiao K Y. Application of geophysical exploration method in mineral resources prediction[J]. Journal of Geology, 2012,36(3):333-336.
Google Scholar
|
[9] |
王万银, 邱之云, 杨永, 等. 位场边缘识别方法研究进展[J]. 地球物理学进展, 2010,25(1):196-210.
Google Scholar
|
[10] |
Wang W Y, Qiu Z Y, Yang Y, et al. Some advances in the edge recognition of the potential field[J]. Progress in Geophysics, 2010,25(1):196-210.
Google Scholar
|
[11] |
Hood P, McClure D J. Gradient measurements in ground magnetic prospecting[J]. Geophysics, 1965,30(3):403-410.
Google Scholar
|
[12] |
Hood P J, Teskey D J. Aeromagnetic gradiometer program of the Geological Survey of Canada[J]. Geophysics, 1989,54(8):1012-1022.
Google Scholar
|
[13] |
Cordell L. Gravimetric express of graben faulting in Santa Fe Country and the Espanola Basin[C]// New Mexico: New Mexico Geol. Soc. Guidebook, 30rd Field Conf., 1979: 59-64.
Google Scholar
|
[14] |
Grauch V J S, Cordell L. Limitation of determining density or magnetic boundaries form the horizontal gradient of gravity or pseudo-gravity data[J]. Geophysics, 1987,52(1):118-121.
Google Scholar
|
[15] |
Nabighian M N. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation[J]. Geophysics, 1972,37(3):507-517.
Google Scholar
|
[16] |
Nabighian M N. Toward a three dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations[J]. Geophysics, 1984,49(6):780-786.
Google Scholar
|
[17] |
Li X. Understanding 3D analytic signal amplitude[J]. Geophysics, 2006,71(2):L13-L16.
Google Scholar
|
[18] |
Miller H G, Singh V. Potential field tilt-a new concept for location of potential field sources[J]. Journal of Applied Geophysics, 1994,32(2-3):213-217.
Google Scholar
|
[19] |
Miller H G, Singh V. Semiquantitative techniques for the identification and removal of directional trends from potential field data[J]. Journal of Applied Geophysics, 1994,32(2-3):199-211.
Google Scholar
|
[20] |
王想, 李桐林. Tilt梯度及其水平导数提取重磁源边界位置[J]. 地球物理学进展, 2004,19(3):625-630.
Google Scholar
|
[21] |
Wang X, Li T L. Location the boundaries of magnetic or gravity sources with Tdr-Thdr methods[J]. Progress in Geophysics, 2004,19(3):625-630.
Google Scholar
|
[22] |
Wijns C, Perez C, Kowalczyk P. Theta map: Edge detection in magnetic data[J]. Geophysics, 2005,70(4):L39-L43.
Google Scholar
|
[23] |
Verduzco B, Fairhead J D, Green C M, et al. The meter reader-New insights into magnetic derivatives for structural mapping[J]. The Leading Edge, 2004,23(2):116-119.
Google Scholar
|
[24] |
王彦国, 罗潇, 邓居智, 等. 基于改进tilt梯度的三维磁异常解释技术[J]. 石油地球物理勘探, 2019,54(3):685-691.
Google Scholar
|
[25] |
Wang Y G, Luo X, Deng J Z, et al. 3D magnetic data interpretation based on improved tilt angle[J]. Oil Geophysical Prospecting, 2019,54(3):685-691.
Google Scholar
|
[26] |
Ekinci Y L, Ertekin C, Yigitbaş E. On the effectiveness of directional derivative based filters on gravity anomalies for source edge approximation: Synthetic simulations and a case study from the Aegean graben system (western Anatolia, Turkey)[J]. Journal of Geophysics and Engineering, 2013,10(3):1-15.
Google Scholar
|
[27] |
赵希刚, 吴汉宁, 柏冠军, 等. 重磁异常解释断裂构造的处理方法及图示技术[J]. 地球物理学进展, 2008,23(2):414-421.
Google Scholar
|
[28] |
Zhao X G, Wu H N, Bai G J, et al. Magnetic and gravity data processing method and imaging techniques for faulted structure interpretation[J]. Progress in Geophysics, 2008,23(2):414-421.
Google Scholar
|
[29] |
夏玲燕, 吴汉宁, 柏冠军, 等. 柴达木盆地航磁资料微弱信息增强技术研究及在线性构造识别中的应用[J]. 地球物理学进展, 2008,23(4):1058-1062.
Google Scholar
|
[30] |
Xia L Y, Wu H N, Bai G J, et al. Research on enhancing weak signal technology and recognition of linear structures using aerial-magnetic data in the Qaidam Basin[J]. Progress in Geophysics, 2008,23(4):1058-1062.
Google Scholar
|
[31] |
肖锋, 吴燕冈, 孟令顺. 重力异常图中的边界增强和提取技术[J]. 吉林大学学报:地球科学版, 2011,41(4):1197-1203.
Google Scholar
|
[32] |
Xiao F, Wu Y G, Meng L S. Edge enhancement and detection technology in gravity anomaly map[J]. Journal of Jilin University:Earth Science Edition, 2011,41(4):1197-1203.
Google Scholar
|
[33] |
Hidalgo-Gato M C, Barbosa V C F. Edge detection of potential-field sources using scale-space monogenic signal: Fundamental principles[J]. Geophysics, 2015,80(5):J27-J36.
Google Scholar
|
[34] |
Alamdar K, Rouhani A K, Ansari H. A new edge detection method based on the analytic signal of tilt angle (ASTA) for magnetic anomalies[C]// Istanbul International Geophysical Conference and Oil & Gas Exhibition, 2012.
Google Scholar
|
[35] |
Cooper G R J. Reducing the dependence of the analytic signal amplitude of aeromagnetic data on the source vector direction[J]. Geophysics, 2014,79(4):J55-J60.
Google Scholar
|
[36] |
英高海, 姚长利, 郑元满, 等. 基于磁异常的边界特征增强方对比研究[J]. 地球物理学报, 2016,59(11):4383-4398.
Google Scholar
|
[37] |
Ying G H, Yao C L, Zheng Y M, et al. Comparative study on methods of edge enhancement of magnetic anomalies[J]. Chinese Journal of Geophysics, 2016,59(11):4383-4398.
Google Scholar
|
[38] |
马国庆, 杜晓娟, 李丽丽. 利用水平与垂直导数的相关系数进行位场数据的边界识别[J]. 吉林大学学报:地球科学版, 2011,41(S1):345-348.
Google Scholar
|
[39] |
Ma G Q, Du X J, Li L L. Edge detection of potential field data using correlation coefficients of horizontal and vertical derivatives[J]. Journal of Jilin University:Earth Sciences Edition, 2011,41(S1):345-348.
Google Scholar
|
[40] |
马国庆, 杜晓娟, 李丽丽. 位场数据边界识别的新方法——增强型水平导数法[J]. 地球物理学进展, 2013,28(1):402-408.
Google Scholar
|
[41] |
Ma G Q, Du X J, Li L L. New edge detection method of potential field data-enhanced horizontal derivative method[J]. Progress in Geophysics, 2013,28(1):402-408.
Google Scholar
|
[42] |
Ma G, Liu C, Li L. Balanced horizontal derivative of potential field data to recognize the edges and estimate location parameters of the source[J]. Journal of Applied Geophysics, 2014,108:12-18.
Google Scholar
|
[43] |
王彦国, 张凤旭, 刘财, 等. 位场垂向梯度最佳自比值的边界检测技术[J]. 地球物理学报, 2013,56(7):3463-3472.
Google Scholar
|
[44] |
Wang Y G, Zhang F X, Liu C, et al. Edge detection in potential fields using optimal auto-ratio of vertical gradient[J]. Chinese Journal of Geophysics, 2013,56(7):3463-3472.
Google Scholar
|
[45] |
Du W, Wu Y, Guan Y, et al. Edge detection in potential field using the correlation coefficients between the average and standard deviation of vertical derivatives[J]. Journal of Applied Geophysics, 2014,143:231-238.
Google Scholar
|
[46] |
于平, 张琦, 张冲. 基于水平方向解析信号的均衡重力位场边界识别方法[J]. 地球物理学报, 2019,61(10):3734-3743.
Google Scholar
|
[47] |
Yu P, Zhang Q, Zhang C. A new method of balanced edge detection for the gravity potential-field based on horizontal analytical signal[J]. Chinese Journal of Geophysics, 2019,61(10):3734-3743.
Google Scholar
|
[48] |
郭灿文, 郇恒飞, 马永. 利用水平导数与垂向导数标准偏差的相关系数法识别磁源边界[J]. 地质与勘探, 2020,56(2):418-426.
Google Scholar
|
[49] |
Guo C W, Huan H F, Ma Y. Identification of magnetic source boundaries using correlation coefficients of standard deviation of horizontal and vertical derivatives[J]. Geology and Exploration, 2020,56(2):418-426.
Google Scholar
|
[50] |
Pham L T, Oksum E, Do T D. Edge enhancement of potential field data using the logistic function and the total horizontal gradient[J]. Acta Geodaetica et Geophysica, 2019,54:143-155.
Google Scholar
|
[51] |
王赛昕, 刘林静. 均值归一化总水平导数边界识别方法[J]. 工程地球物理学报, 2011,8(6):699-704.
Google Scholar
|
[52] |
Wang S X, Liu L J. Edge detection by equalized and normalized amplitude of total horizontal derivatives[J]. Chinese Journal of Engineering Geophysics, 2011,8(6):699-704.
Google Scholar
|
[53] |
Ma G, Li L. Edge detection in potential fields with the normalized total horizontal derivative[J]. Computers & Geosciences, 2012,41:83-87.
Google Scholar
|
[54] |
李丽丽, 黄大年, 韩立国. 归一化总水平导数法在位场数据解释中的应用[J]. 地球物理学报, 2014,57(12):4123-4131.
Google Scholar
|
[55] |
Li L L, Huang D N, Han L G. Application of the normalized total horizontal derivative (NTHD) in the interpretation of potential field data[J]. Chinese Journal of Geophysics, 2014,57(12):4123-4131.
Google Scholar
|
[56] |
Li L, Huang D, Han L. Normalized edge detection, and the horizontal extent and depth of geophysical anomalies[J]. Applied Geophysics, 2014,11(2):149-157.
Google Scholar
|
[57] |
Wang W, Pan Y, Qiu Z. A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data[J]. Applied Geophysics, 2009,6(3):226-233.
Google Scholar
|
[58] |
王万银, 冯旭亮, 高玲举, 等. 重磁方法在图尔库班套铜镍矿区勘查中的应用[J]. 物探与化探, 2014,38(3):423-429.
Google Scholar
|
[59] |
Wang W Y, Feng X L, Gao L J, et al. The application of gravity and magnetic techniques to the prospecting for the Tuerkubantao copper-nickel ore district[J]. Geophysical and Geochemical Exploration, 2014,38(3):423-429.
Google Scholar
|
[60] |
张菲菲, 王万银, 杨金玉, 等. 根据重力数据研究南海北部陆缘断裂带的延伸问题[J]. 地球物理学进展, 2014,29(5):2113-2119.
Google Scholar
|
[61] |
Zhang F F, Wang W Y, Yang J Y, et al. Research on the extension of faults zones in northern margin of the South China Sea based on the gravity data[J]. Progress in Geophysics, 2014,29(5):2113-2119.
Google Scholar
|
[62] |
罗新刚, 王万银, 张功成, 等. 基于重力资料的南海及邻区断裂分布特征研究[J]. 地球物理学报, 2018,61(10):4255-4268.
Google Scholar
|
[63] |
Luo X G, Wang W Y, Zhang G C, et al. Study on distribution features of faults based on gravity data in the South China Sea and its adjacent areas[J]. Chinese Journal of Geophysics, 2018,61(10):4255-4268.
Google Scholar
|
[64] |
赵强. 归一化总水平导数垂向导数法在位场数据解释中的应用[J]. 物探与化探, 2018,42(2):374-380.
Google Scholar
|
[65] |
Zhao Q. The application of normalized total horizontal derivative vertical derivative method to the interpretation of in situ data[J]. Geophysical and Geochemical Exploration, 2018,42(2):374-380.
Google Scholar
|
[66] |
Bott M P H. The use of rapid digital computing methods for direct gravity interpretation of sedimentary basin[J]. Geophysical Journal Royal Astronomical Society, 1960,3(1):63-67.
Google Scholar
|
[67] |
Silva J B C, Santos D F, Gomes K P. Fast gravity inversion of basement relief[J]. Geophysics, 2014,79(5):G79-G91.
Google Scholar
|
[68] |
Feng X, Wang W, Yuan B. 3D gravity inversion of basement relief for a rift basin based on combined multinorm and normalized vertical derivative of the total horizontal derivative techniques[J]. Geophysics, 2018,83(5):G107-G118.
Google Scholar
|
[69] |
冯旭亮, 袁炳强, 李玉宏, 等. 渭河盆地基底三维变密度重力反演[J]. 石油地球物理勘探, 2019,54(2):461-471.
Google Scholar
|
[70] |
Feng X L, Yuan B Q, Li Y H, et al. Basement depth estimation based on gravity anomalies in Weihe Basin with 3D variable density contrast model[J]. Oil Geophysical Prospecting, 2019,54(2):461-471.
Google Scholar
|
[71] |
包洪平, 邵东波, 郝松立, 等. 鄂尔多斯盆地基底结构及早期沉积盖层演化[J]. 地学前缘, 2019,26(1):33-43.
Google Scholar
|
[72] |
Bao H P, Shao D B, Hao S L, et al. Basement structure and evolution of early sedimentary cover of the Ordos Basin[J]. Earth Science Frontiers, 2019,26(1):33-43.
Google Scholar
|