China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 1
Article Contents

ZOU Yu, WANG Guo-Jian, YANG Fan, CHEN Yuan. 2022. Research progress of methane microseepage in petroliferous basins and its significance for oil-gas exploration. Geophysical and Geochemical Exploration, 46(1): 1-11. doi: 10.11720/wtyht.2022.1150
Citation: ZOU Yu, WANG Guo-Jian, YANG Fan, CHEN Yuan. 2022. Research progress of methane microseepage in petroliferous basins and its significance for oil-gas exploration. Geophysical and Geochemical Exploration, 46(1): 1-11. doi: 10.11720/wtyht.2022.1150

Research progress of methane microseepage in petroliferous basins and its significance for oil-gas exploration

  • Great progress has been made in the formation mechanisms of surface characteristics of gas microseepagesince the start of the 21st century, which is significant for oil-gas exploration. The microseepage in petroliferous basins is dominated by methane, which migrates nearly vertically from source rocks or reservoirs toward ground surface. The chemical, physical, and biological variation characteristics produced on the ground surface approximately reflect the oil reservoirs underground. Therefore, the methane microseepage is an objective and important part of the petroleum seepage system and has replaced microseepage as the most effective window for the tracing of underground reservoirs on the ground surface at present. Methane microseepage can be directly monitored on ground surface and in water and atmosphere, and the component concentrations and isotopic composition of methane-bearing hydrocarbon gases serve as the first-hand important data for the assessment of underground oil and gas. The data indirectly monitored mainly source from microorganisms, vegetation, minerals, radioactivity, and magnetism on the ground surface. Similar to the geochemical exploration data directly obtained, these abnormal data canbe distinguished from the background values of the ground surface far away from the oil reservoirs, and the distribution areas of the anomalies will become important targets of favorable exploration areas. It will play an increasingly important role in the future integrated oil and gas explorationto gain in-depth understanding of methane microseepage mechanisms, avoid single monitoring method and one-sided understanding, transform ideas to adoptsurface integrated monitoring methods, and establish new mathematical analysis systems.
  • 加载中
  • [1] Etiope G. The Earth's hydrocarbon degassing [M]. Switzerland: Springer International Publishing, 2015.

    Google Scholar

    [2] Sechman H, Kotarba M J, Kędzior S, et al. Fluctuations in methane and carbon dioxide concentrations in the near-surface zone and their genetic characterization in abandoned and active coal mines in the SW part of the Upper Silesian Coal Basin, Poland[J]. International Journal of Coal Geology, 2020,227:103529.

    Google Scholar

    [3] Kotarba M J, Więcław D, Bilkiewicz E, et al. Origin, secondary processes and migration of oil and natural gas in the central part of the Polish Outer Carpathians[J]. Marine and Petroleum Geology, 2020,121:104617.

    Google Scholar

    [4] Etiope G, Ehlmann B L, Schoell M. Low temperature production and exhalation of methane from serpentinized rocks on Earth: A potential analog for methane production on Mars[J]. Icarus, 2013,224(2):276-285.

    Google Scholar

    [5] Etiope G, Schwietzke S. Global geological methane emissions: An update of top-down and bottom-up estimates[J]. Elementa-Science of the Anthropocene, 2019,47(7):1-9.

    Google Scholar

    [6] 许跃, 唐俊红, 王国建, 等. 含油气盆地地质甲烷释放研究综述[J]. 地质学报, 2016,90(3):553-558.

    Google Scholar

    [7] Yu Y, Tang J H, Wang G J, et al. A comprehensive review of geologic methane emission in hydrocarbon-prone areas[J]. Acta Geological Sinica, 2016,90(3):553-558.

    Google Scholar

    [8] 唐俊红, 高忆平, 施明才, 等. 含油气盆地微渗漏甲烷运移机制研究进展[J]. 杭州电子科技大学学报:自然科学版, 2019,39(2):64-69.

    Google Scholar

    [9] Tang J H, Gao Y P, Shi M C, et al. A preliminary review of gas migration mechanisms of methane microseepage in hydrocarbon-prone areas[J]. Journal of Hangzhou Dianzi University:Natural Sciences, 2019,39(2):64-69.

    Google Scholar

    [10] Ciotoli G, Procesi M, Etiope G, et al. Influence of tectonics on global scale distribution of geological methane emissions[J]. Nature Communications, 2020,11(1):2305.

    Google Scholar

    [11] 王国建, 汤玉平, 唐俊红, 等. 断层对烃类微渗漏主控作用及异常分布影响的实验模拟研究[J]. 物探与化探, 2018,42(1):21-27.

    Google Scholar

    [12] Wang G J, Tang Y P, Tang J H, et al. Experimental simulation of the effect of faults on vertical hydrocarbon microseepage[J]. Geophysical and Geochemical Exploration, 2018,42(1):21-27.

    Google Scholar

    [13] 王国建, 唐俊红, 汤玉平, 等. 油气藏上方地层中不同赋存态微渗漏轻烃特征初步模拟实验研究[J]. 石油实验地质, 2017,39(2):261-266.

    Google Scholar

    [14] Wang G J, Tang J H, Tang Y P, et al. Simulation of microseepage of light hydrocarbon of different occurrence states in strata above reservoirs[J]. Petroleum Geology & Experiment, 2017,39(2):261-266.

    Google Scholar

    [15] He J, Wang J, Milsch H, et al. The characteristics and formation mechanism of a regional fault in shale strata: Insights from the Middle-Upper Yangtze, China[J]. Marine and Petroleum Geology, 2020,121:104592.

    Google Scholar

    [16] Asadzadeh S, de Souza Filho de Souza Filho. Spectral remote sensing for onshore seepage characterization: A critical overview[J]. Earth-Science Reviews, 2017,168:48-72.

    Google Scholar

    [17] Allek K, Boubaya D, Bouguern A, et al. Spatial association analysis between hydrocarbon fields and sedimentary residual magnetic anomalies using Weights of Evidence: An example from the Triassic Province of Algeria[J]. Journal of Applied Geophysics, 2016,135:100-110.

    Google Scholar

    [18] 顾磊, 许科伟, 汤玉平, 等. 基于高通量测序技术研究页岩气区上方微生物多样性[J]. 石油实验地质, 2020,42(3):443-450,458.

    Google Scholar

    [19] Gu L, Xu K W, Tang Y P, et al. Microbial diversity above a shale gas field using high-throughput sequencing[J]. Petroleum Geology & Experiment, 2020,42(3):443-450,458.

    Google Scholar

    [20] Abrams M A. Significance of hydrocarbon seepage relative to petroleum generation and entrapment[J]. Marine and Petroleum Geology, 2005,22(4):457-477.

    Google Scholar

    [21] Sobolev I S, Bredikhin N P, Bratec T, et al. Chemical diagenesis in near-surface zone above oil fields in geochemical exploration[J]. Applied Geochemistry, 2018,95:33-44.

    Google Scholar

    [22] 齐小平, 张友焱, 杨辉, 等. 柴达木盆地三湖地区天然气有利勘探区带(目标)遥感物化探综合分析与评价[J]. 中国石油勘探, 2012,17(5):17-26.

    Google Scholar

    [23] Qi X P, Zhang Y Y, Yang H, et al. Analysis and evaluation of beneficial gas exploration zone based on remote sensing geophysical and geochemical methods in Sanhu area of Qaidam basin[J]. China Petroleum Exploration, 2012,17(5):17-26.

    Google Scholar

    [24] 王国建, 杨帆, 卢丽, 等. 采样季节对油气化探中游离烃方法的影响讨论[J]. 石油天然气学报, 2010,32(4):166-170,429.

    Google Scholar

    [25] Wang G J, Yang F, Lu L, et al. Influence of sampling seasons on soil gas method in surface geochemical prospecting for oil and gas[J]. Journal of Oil and Gas Technology, 2010,32(4):166-170,429.

    Google Scholar

    [26] Schumacher D Integrating hydrocarbon microseepage data with seismic data doubles exploration success[C]//Proceedings thirty-fourth annual conference and exhibition,Indonesian Petroleum Association, Indonesia, 2010.

    Google Scholar

    [27] Milkov A V, Etiope G. Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples[J]. Organic Geochemistry, 2018,125:109-120.

    Google Scholar

    [28] Milkov A V. Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs[J]. Organic Geochemistry, 2011,42(2):184-207.

    Google Scholar

    [29] 赵静, 梁前勇, 张莉, 等. 基于酸解烃判别台湾海峡盆地西部坳陷含油气系统的油气藏属性[J]. 物探与化探, 2018,42(3):436-441.

    Google Scholar

    [30] Zhao J, Liang Q Y, Zhang L, et al. Oil and gas reservoir attribute discrimination based on surface sediment acid-extraction hydrocarbon in the western depression of Taiwan Strait Basin[J]. Geophysical and Geochemical Exploration, 2018,42(3):436-441.

    Google Scholar

    [31] Sechman H, Guzy P, Kaszuba P, et al. Direct and indirect surface geochemical methods in petroleum exploration: A case study from eastern part of the Polish Outer Carpathians[J]. International Journal of Earth Sciences, 2020,109(5):1853-1867.

    Google Scholar

    [32] 冯俊熙, 杨胜雄, 孙晓明, 等. 琼东南盆地甲烷微渗漏活动地球化学示踪研究[J]. 西南石油大学学报:自然科学版, 2018,40(3):63-75.

    Google Scholar

    [33] Feng J X, Yang S X, Sun X M, et al. Geochemical tracers for methane microleakage activity in the Qiongdongnan basin[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2018,40(3):63-75.

    Google Scholar

    [34] Hunt J M. Petroleum geochemistry and geology[M]. New York: Freeman and Co., 1996.

    Google Scholar

    [35] 杨金秀, 宋朋霖, 王红亮, 等. 琼东南盆地天然气水合物成藏模式及主控因素分析[J/OL]. 石油与天然气地质. 2019:1-17[2021-02-04]. http://kns.cnki.net/kcms/detail/11.4820.te.20191126.1454.004.html.

    Google Scholar

    [36] Yang J X, Song P L, Wang H L, et al. Gas hydrate accumulation model and major controlling factors in Qiongdongnan Basin[J/OL]. Oil & Gas Geology, 2019:1-17[2021-02-04]. http://kns.cnki.net/kcms/detail/11.4820.te.20191126.1454.004.html.

    Google Scholar

    [37] Klusman R W, Saaed M A. Comparison of light hydrocarbon microseepage mechanisms [G]//Schumacher D, Abrams M A. Hydrocarbon migration and its near-surface expression. Oklahoma:AAPG Memoir. 1996: 157-168.

    Google Scholar

    [38] Abrams M A. Marine seepage variability and its impact on evaluating the surface migrated hydrocarbon seep signal[J]. Marine and Petroleum Geology, 2020,121:104600.

    Google Scholar

    [39] Hirst B, Gibson G, Gillespie S, et al. Oil and gas prospecting by ultra-sensitive optical gas detection with inverse gas dispersion modelling[J]. Geophysical Research Letters, 2004,31(12):1-4.

    Google Scholar

    [40] Zhou Q, Xu X, Xu H, et al. Surface microbial geochemistry of the Beihanzhuang Oilfield, northern Jiangsu, China[J]. Journal of Petroleum Science and Engineering, 2020,191:107140.

    Google Scholar

    [41] 汤玉平, 宁丽荣, 蒋涛, 等. 积雪油气化探方法试验研究[J]. 石油实验地质, 2009,31(3):287-291.

    Google Scholar

    [42] Tang Y P, Ning L R, Jiang T, et al. Experimental research on the oil and gas geochemical exploration method of snow cover[J]. Petroleum Geology & Experiment, 2009,31(3):287-291.

    Google Scholar

    [43] 赵克斌, 陈银节, 孙长青. 油气化探异常的稳定性及油气地质意义[J]. 地质通报, 2009,28(11):1620-1627.

    Google Scholar

    [44] Zhao K B, Chen Y J, Sun C Q. Stability and petroleum geological significance of hydrocarbon geochemical Anomaly[J]. Geological Bulletin of China, 2009,28(11):1620-1627.

    Google Scholar

    [45] 杨俊, 沈忠民, 王国建, 等. 油气化探异常双因素评价方法——以渤海湾盆地济阳坳陷临南—钱官屯地区为例[J]. 石油实验地质, 2018,40(2):295-302.

    Google Scholar

    [46] Yang J, Shen Z M, Wang G J, et al. Double-factor evaluation for oil and gas geochemical anomalies: A case study of Linnan-Qianguantun areas, Jiyang Depression, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2018,40(2):295-302.

    Google Scholar

    [47] Huang S, Chen S, Wang D, et al. Hydrocarbon micro-seepage detection from airborne hyper-spectral images by plant stress spectra based on the PROSPECT model[J]. International Journal of Applied Earth Observation and Geoinformation, 2019,74:180-190.

    Google Scholar

    [48] Senouci M, Allek K. Application of Bayesian classifier to magnetic and gamma ray spectrometry data for targeting hydrocarbon microseepages[J]. Journal of Applied Geophysics, 2020,181:104145.

    Google Scholar

    [49] Baciu C, Ionescu A, Etiope G. Hydrocarbon seeps in Romania: Gas origin and release to the atmosphere[J]. Marine and Petroleum Geology, 2018,89:130-143.

    Google Scholar

    [50] Berner U, Faber E. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis[J]. Organic Geochemistry, 1996,24(10):947-955.

    Google Scholar

    [51] Zhang L, Bai G, Zhao K, et al. Restudy of acid-extractable hydrocarbon data from surface geochemical survey in the Yimeng Uplift of the Ordos Basin, China: Improvement of geochemical prospecting for hydrocarbons[J]. Marine and Petroleum Geology, 2006,23(5):529-542.

    Google Scholar

    [52] Zhang L, Bai G, Zhao Y. Data-processing and recognition of seepage and microseepage anomalies of acid-extractable hydrocarbons in the south slope of the Dongying depression, eastern China[J]. Marine and Petroleum Geology, 2014,57:385-402.

    Google Scholar

    [53] 荣发准, 陈昕华, 孙长青, 等. 近地表油气化探异常的确定与解释评价[J]. 物探与化探, 2013,37(2):212-217,24.

    Google Scholar

    [54] Rong F Z, Chen X H, Sun C Q, et al. The determination and interpretation of near-surface geochemical oil-gas anomaly[J]. Geophysical and Geochemical Exploration, 2013,37(2):212-217,24.

    Google Scholar

    [55] 王珺璐, 贺永红, 王萌, 等. 层次分析和特征值分析相结合的物化探综合油气评价[J]. 物探与化探, 2015,39(4):762-767.

    Google Scholar

    [56] Wang J L, He Y H, Wang M, et al. The comprehensive evaluation of oil and gas exploration combining hierarchy analysis and eigenvalue analysis[J]. Geophysical and Geochemical Exploration, 2015,39(4):762-767.

    Google Scholar

    [57] 孙忠军. 中国油气化探的成功案例[J]. 地质通报, 2009,28(11):1562-1571.

    Google Scholar

    [58] Sun Z J. Case histories of hydrocarbon survey success in China[J]. Geological Bulletin of China, 2009,28(11):1562-1571.

    Google Scholar

    [59] 汤玉平, 赵克斌, 吴传芝, 等. 中国油气化探的近期进展和发展方向[J]. 地质通报, 2009,28(11):1614-1619.

    Google Scholar

    [60] Tang Y P, Zhao K B, Wu C Z, et al. Recent advances and developing trend of hydrocarbon geochemical exploration in China[J]. Geological Bulletin of China, 2009,28(11):1614-1619.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1157) PDF downloads(282) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint