China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 6
Article Contents

HOU Sheng-Lan, CHEN Ru-Jun, WANG Zi-Hui, LIU Zhi-Tong, LIU Jin. 2022. Development of the NB-IoT-based measurement and control software for broadband SIP response testers for rock and ore specimens. Geophysical and Geochemical Exploration, 46(6): 1463-1469. doi: 10.11720/wtyht.2022.1542
Citation: HOU Sheng-Lan, CHEN Ru-Jun, WANG Zi-Hui, LIU Zhi-Tong, LIU Jin. 2022. Development of the NB-IoT-based measurement and control software for broadband SIP response testers for rock and ore specimens. Geophysical and Geochemical Exploration, 46(6): 1463-1469. doi: 10.11720/wtyht.2022.1542

Development of the NB-IoT-based measurement and control software for broadband SIP response testers for rock and ore specimens

  • Spectral induced polarization (SIP) response testers for rock and ore specimens determine the SIP response differences between ore bodies and host rocks by measuring the SIP characteristics of rock and ore specimens, thus providing a basis for ore prospecting. They are widely used in geophysical exploration. However, the existing SIP response testers have shortcomings in terms of bandwidth, intelligence, portability, and power consumption. Given this, this study developed a piece of measurement and control software for SIP response testers based on the Internet of Things (IoT) techniques including NB-IoT, Bluetooth, and Wifi, realizing the functions such as near-field communication, cloud communication, data visualization, and data processing. The test results verify that the software can achieve the desired effect owing to its easy operation, stable running, and friendly man-machine interaction.
  • 加载中
  • [1] 曹中林, 昌彦君, 何展翔. 基于演化算法的复电阻率频谱参数反演[J]. 工程地球物理学报, 2005, 2(1):33-38.

    Google Scholar

    [2] Cao Z L, Chang Y J, He Z X. Inversion of complex resistivity spectrum parameters based on evolutionary algorithm[J]. Journal of Engineering Geophysics, 2005, 2(1): 33-38.

    Google Scholar

    [3] 罗传华, 昌彦君, 李志华. 频谱激电法在铜陵市某滑坡地段滑动面勘探中的应用[J]. 工程地球物理学报, 2017, 14(1):26-30.

    Google Scholar

    [4] Luo C H, Chang Y J, Li Z H. The application of the spectrum induced polarization method in the exploration of the sliding surface of a landslide section in Tongling City[J]. Journal of Engineering Geophysics, 2017, 14(1): 26-30.

    Google Scholar

    [5] 郑冰. 频谱激电法在某铅锌银矿的应用[J]. 工程地球物理学报, 2015, 12(6):750-754.

    Google Scholar

    [6] Zheng B. Application of spectrum induced polarization method in a lead-zinc-silver mine[J]. Journal of Engineering Geophysics, 2015, 12(6):750-754.

    Google Scholar

    [7] 武斌, 邹俊, 马代海. 频谱激电法在天然气水合物勘查中的应用[J]. 四川地质学报, 2016, 36(1):135-138.

    Google Scholar

    [8] Wu B, Zou J, Ma D H. Application of spectrum induced polarization method in natural gas hydrate exploration[J]. Journal of Sichuan Geology, 2016, 36(1): 135-138.

    Google Scholar

    [9] Deng Y, Shi X, Zhang Z. Application of spectral induced polarization for characterizing surfactant-enhanced DNAPL remediation in laboratory column experiments[J]. Journal of Contaminant Hydrology, 2020, 230:103603.

    Google Scholar

    [10] 杨迪. 天然岩矿石复电阻率测量及频谱曲线特征研究[D]. 北京: 中国地质大学(北京), 2019.

    Google Scholar

    [11] Yang D. Study on complex resistivity measurement and spectrum curve characteristics of natural rock ore[D]. Beijing: China University of Geosciences (Beijing), 2019.

    Google Scholar

    [12] 郑树桐. 扫频介电测井岩石物理基础实验研究[D]. 北京: 中国石油大学(北京), 2018.

    Google Scholar

    [13] Zheng S T. Basic experimental study on rock physics of swept frequency dielectric logging[D]. Beijing: China University of Petroleum (Beijing), 2018.

    Google Scholar

    [14] 曹春国, 冯国彦, 刘红. 频谱激电法(SIP)在深部金属矿探测中的原理与应用[J]. 山东国土资源, 2009, 25(9):41-45.

    Google Scholar

    [15] Cao C G, Feng G Y, Liu H. Principle and application of spectrum IP method (SIP) in deep metal mine exploration[J]. Shandong Land and Resources, 2009, 25(9):41-45.

    Google Scholar

    [16] 葛双超, 邓明, 陈凯. 复电阻率测量方法与模型仿真[J]. 地球科学进展, 2014, 29(11):1271-1276.

    Google Scholar

    [17] Ge S C, Deng M, Chen K. Complex resistivity measurement method and model simulation[J]. Advances in Earth Sciences, 2014, 29(11):1271-1276.

    Google Scholar

    [18] 林君. 高端地球物理仪器研究及我国产业化现状[J]. 仪器仪表学报, 2010, 31(8):174-180.

    Google Scholar

    [19] Lin J. Research on high-end geophysical instruments and the status quo of industrialization in my country[J]. Chinese Journal of Scientific Instrament, 2010, 31(8):174-180.

    Google Scholar

    [20] 陈儒军. 新技术在电法仪器中的应用概况及前景[C]// 当代矿山地质地球物理新进展: 中国地质学会, 2004:239-244.

    Google Scholar

    [21] Chen R J. Overview and prospects of the application of new technologies in electrical instruments[C]// New progress in contemporary mine geology and geophysics: The Geological Society of China, 2004:239-244.

    Google Scholar

    [22] 王甫康, 庹先国, 刘勇, 等. 节点地震仪无线传输系统设计[J]. 制造业自动化, 2021, 43(11):85-88.

    Google Scholar

    [23] Wang F K, Tuo X G, Liu Y, et al. Design of wireless transmission system for nodal seismograph[J]. Manufacturing Automation, 2021, 43(11):85-88.

    Google Scholar

    [24] 文尚石, 汤井田, 裴婧, 等. 基于Android平台的广域电磁接收机采集监控软件研究与实现[J]. 地球物理学进展, 2018, 33(2):866-873.

    Google Scholar

    [25] Wen S S, Tang J T, Pei J, et al. Research and implementation of wide-area electromagnetic receiver acquisition and monitoring software based on Android platform[J]. Progress in Geophysics, 2018, 33(2):866-873.

    Google Scholar

    [26] 何锦淳, 李爵成, 李丹. 基于 STM32 的智能安防系统[J]. 物联网技术, 2020, 10(5):49-54.

    Google Scholar

    [27] He J C, Li J C, Li D. Smart security system based on STM32[J]. Internet of Things Technology, 2020, 10(5):49-54.

    Google Scholar

    [28] 舒泰歌, 游乾乾, 李慕凡. 基于STM32 无线信息采集系统设计[J]. 科技风, 2020(15):120-121.

    Google Scholar

    [29] Shu T G, You Q Q, Li M F. Design of wireless information collection system based on STM32[J]. Technology Wind, 2020(15):120-121.

    Google Scholar

    [30] 杨杰. 基于华为云的数据挖掘和展示系统研究[J]. 无线万联科技, 2020, 17(24):24-25.

    Google Scholar

    [31] Yang J. Research on data mining and display system based on Huawei Cloud[J]. Wireless Wanlian Technology, 2020, 17(24):24-25.

    Google Scholar

    [32] 金恩曼, 陈培余. 一种智能大棚的温湿度检测系统数字技术与应用[J]. 数字与技术, 2019, 37(7):85-87.

    Google Scholar

    [33] Jin E M, Chen P Y. Digital technology and application of a temperature and humidity detection system for intelligent greenhouse[J]. Digital and Technology, 2019, 37(7):85-87.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(853) PDF downloads(70) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint