China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2021 Vol. 45, No. 6
Article Contents

HUANG Yuan-Sheng, WANG Yan-Guo, LUO Xiao. 2021. A fast estimation method of magnetic-source parameters based on the vertical difference of normalized source strength. Geophysical and Geochemical Exploration, 45(6): 1588-1596. doi: 10.11720/wtyht.2021.0291
Citation: HUANG Yuan-Sheng, WANG Yan-Guo, LUO Xiao. 2021. A fast estimation method of magnetic-source parameters based on the vertical difference of normalized source strength. Geophysical and Geochemical Exploration, 45(6): 1588-1596. doi: 10.11720/wtyht.2021.0291

A fast estimation method of magnetic-source parameters based on the vertical difference of normalized source strength

  • Fast automatic inversion is a primary tool for magnetic data interpretation. The normalized source strength (NSS) is one main method for three-dimensional magnetic data interpretation as it is independent of magnetization direction. In this paper, the vertical difference of the normalized source of strength is introduced, and a fast estimation method of magnetic-source parameters based on the vertical difference of normalized source strength is derived in the light of the vertical difference of NSS at different height. In addition, upward continuation of suitable height can be used to improve the stability of the method. Model tests shows that the vertical difference of NSS has higher resolution ability and can recognize the horizontal locations of magnetic sources, and the proposed automatic inversion method can obtain the depths and structural indices of the sources. In this paper, the proposed method is applied to magnetic anomaly of M area over Inner Mongolia, and obtain the horizontal locations, depths and structural indices of magnetic sources. The results could provide useful information for forecasting the distribution of concealed rock mass.
  • 加载中
  • [1] Peters L J. The direct approach to magnetic interpretation and its practical application[J]. Geophysics, 1949, 14(3):290-320.

    Google Scholar

    [2] Thompson D T. EUDPH: A new technique for making computer assisted depth estimates from magnetic data[J]. Geophysics, 1982, 47(1):31-37.

    Google Scholar

    [3] Reid A B, Allsop J M, Granser H, et al. Magnetic interpretation in three dimensions using Euler deconvolution[J]. Geophysics, 1990, 55(1):80-91.

    Google Scholar

    [4] Zhang C Y, Mushayandebvu M F, Reid A B, et al. Euler deconvolution of gravity tensor gradient data[J]. Geophysics, 2000, 65(2):512-520.

    Google Scholar

    [5] Huang D, Gubbins D, Clark R A, et al. Combined study of Euler's homogeneity equation for gravity and magnetic field[C]// Extended Abstracts of 57th EAGE Conference, Glasgow, UK, 1995: 144.

    Google Scholar

    [6] Salem A, Ravat D. A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data[J]. Geophysics, 2003, 68(6):1952-1961.

    Google Scholar

    [7] Salem A, Williams S, Fairhead D, et al. Interpretation of magnetic data using tilt-angle derivatives[J]. Geophysics, 2008, 71(1):1-10.

    Google Scholar

    [8] 马国庆, 杜晓娟, 李丽丽. 解释位场全张量数据的张量局部波数法及其与常规局部波数法的比较[J]. 地球物理学报, 2012, 55(7):2450-2461.

    Google Scholar

    [9] Ma G Q, Du X J, Li L L. Comparison of the tensor local wavenumber method with the conventional local wavenumber method for interpretation of total tensor data of potential fields[J]. Chinese Journal of Geophysics, 2012, 55(7):2450-2461.

    Google Scholar

    [10] Atchuta R D, Ram-Babu H V, Sanker-narayan P V. Interpretation of magnetic anomalies due to dikes: The complex gradient method[J]. Geophysics, 1981, 46(11):1572-1578.

    Google Scholar

    [11] Macleod I N, Jones K, Dai T F. 3-D analytic signal in the interpretation of total magnetic field data at low magnetic latitudes[J]. Exploration Geophysics, 1993, 24:679-688.

    Google Scholar

    [12] Salem A, Ravat D, Mushayandebvu M F, et al. Linearized least-squares method for interpretation of potential-field data from sources of simple geometry[J]. Geophysics, 2004, 69(3):783-788.

    Google Scholar

    [13] Salem A. Interpretation of magnetic data using analytic signal derivatives[J]. Geophysical Prospecting, 2005, 53:75-82.

    Google Scholar

    [14] Ma G Q, Du X J. An improved analytic signal technique for the depth and structural index from 2D magnetic anomaly data[J]. Pure and Applied Geophysics, 2012, 169:2193-2200.

    Google Scholar

    [15] Cooper G R J. The automatic determination of the location and depth of contacts and dykes from aeromagnetic data[J]. Pure and Applied Geophysics, 2014, 171:2417-2423.

    Google Scholar

    [16] Cooper G R J. Using the analytic signal amplitude to determine the location and depth of thin dikes from magnetic data[J]. Geophysics, 2015, 80(1):J1-J6.

    Google Scholar

    [17] Cooper G R J, Whitehead R C. Determining the distance to magnetic source[J]. Geophysics, 2016, 81(2):J25-J34.

    Google Scholar

    [18] Cooper G R J. Determining the depth and location of potential field sources without specifying the structural index[J]. Arabian Journal of Geoscience, 2017, 10(438):1-7.

    Google Scholar

    [19] Wang Y G, Luo X, Zhang J. Interpretation of 2D magnetic sources based on the reciprocal of the analytic signal amplitude[J]. Exploration Geophysics, 2019, 50(6):645-652.

    Google Scholar

    [20] Salem A, Williams S E, Fairhead J D, et al. Tilt-depth method: A simple depth estimation method using fi rst-order magnetic derivatives[J]. The Leading Edge, 2007, 26(12):1502-1505.

    Google Scholar

    [21] Fairhead J D, Salem A, Cascone L, et al. New development of the magnetic tilt-depth method to improve structural mapping of sedimentary basins[J]. Geophysical Prospecting, 2011, 59:1072-1086.

    Google Scholar

    [22] 张恒磊, Marangoni Y R, 左仁广, 等. 改进的各向异性标准化方差探测斜磁化磁异常源边界[J]. 地球物理学报, 2014, 57(8):2724-2731.

    Google Scholar

    [23] Zhang H L, Marangoni Y R, Zuo R G, et al. The improved anisotropy normalized variance for detecting non-vertical magnetization anomalies[J]. Chinese Journal of Geophysics, 2014, 57(8):2724-2731.

    Google Scholar

    [24] Wang Y G, Zhang J, et al. Improved tilt-depth method for fast estimation of top and bottom depths of magnetic bodies[J]. Applied Geophysics, 2016, 13(2):249-256.

    Google Scholar

    [25] Cooper G R J. Applying the tilt-depth and contact-depth methods to the anomalies of thin dykes[J]. Geophysical Prospecting, 2017, 65:316-323.

    Google Scholar

    [26] 曹伟平, 王彦国, 杨博 等. Tilt-depth 方法适用性研究及其应用[J]. 世界地质, 2017, 36(2):560-569.

    Google Scholar

    [27] Cao W P, Wang Y G, Yang B, et al. Applicability of tilt-depth method and its application[J]. World Geology, 2017, 36(2):560-569.

    Google Scholar

    [28] Wilson H S. Analysis of the magnetic gradient tensor[J]. Canada Technical Memorandum, 1985, 8:5-13.

    Google Scholar

    [29] Beiki M, Clark D A, Austin J R, et al. Estimating source location using normalized magnetic source strength calculated from magnetic gradient tensor data[J]. Geophysics, 2012, 77(6):J23-J37.

    Google Scholar

    [30] Pikington M, Beiki M. Mitigating remanent magnetization effects in magnetic data using the normalized source strength[J]. Geophysics, 2013, 78(3):J25-J32.

    Google Scholar

    [31] Guo L H, Meng X H, Zhang G L. Three-dimensional imaging for total amplitude magnetic anomaly and normalized source strength in the presence of strong remanent magnetization[J]. Journal of Applied Geophysics, 2014, (111):121-128.

    Google Scholar

    [32] 饶椿锋, 于鹏, 胡书凡, 等. 基于加权模型参数的归一化磁源强度三维反演[J]. 石油物探, 2017, 56(4):599-606.

    Google Scholar

    [33] Rao C F, Yu P, Hu S F, et al. The 3D inversion of the normalized source strength data based on weighted model parameters[J]. Geophysical Prospecting for Petroleum, 2017, 56(4):599-606.

    Google Scholar

    [34] Blakely R J. Potential theory in gravity and magnetic applications [M]. London: Cambridge University Press, 1995.

    Google Scholar

    [35] Pedersen L B, Rasmussen T M. The gradient tensor of potential field anomalies: Some implications on data collection and data processing of maps[J]. Geophysics, 1990, 55(12):1558-1566.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(823) PDF downloads(100) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint