[1] |
Thompson D T. EULDPH—A new technique for making computer-assisted depth estimates from magnetic data[J]. Geophysics, 1982, 47(1):31-37.
Google Scholar
|
[2] |
Reid A B, Allsop J M, Granser H, et al. Magnetic interpretation in three dimensions using Euler deconvolution[J]. Geophysics, 1990, 55(1):80-91.
Google Scholar
|
[3] |
姚长利, 管志宁, 吴其斌, 等. 欧拉反演方法分析及实用技术改进[J]. 物探与化探, 2004, 28(2):150-155.
Google Scholar
|
[4] |
Yao C L, Guan Z N, Wu Q B, et al. An analysis of Euler deconvolution and its improvement[J]. Geophysical and Geochemical Exploration, 2004, 28(2):150-155.
Google Scholar
|
[5] |
Hsu S K. Imaging magnetic sources using Euler's equation[J]. Geophysical Prospecting, 2002, 50:15-25.
Google Scholar
|
[6] |
Salem A, Ravat D. A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data[J]. Geophysics, 2003, 68(6):1952-1961.
Google Scholar
|
[7] |
Salem A, Smith R. Generalized magnetic tilt-Euler deconvolution[C]// SEG Expanded Abstracts, 2007: 790-794.
Google Scholar
|
[8] |
范美宁, 江裕标, 张景仙. 不同数据用于欧拉方程的模型计算[J]. 地球物理学进展, 2008, 23(4):1250-1253.
Google Scholar
|
[9] |
Fan M N, Jiang Y B, Zhang J X. Model calculation of Euler's equation for different data types[J]. Progress in Geophysics, 2008, 23(4):1250-1253.
Google Scholar
|
[10] |
Ma G Q. The application of extended Euler deconvolution method in the interpretation of potential field data[J]. Journal of Applied Geophysics, 2014, 107(8):188-194.
Google Scholar
|
[11] |
Neil C, Whaler K A, Reid A B. Extensions to Euler's method for three-dimensional potential field interpretation[C]// 53rd EAEG meeting, Florence, Expanded Abstracts, 1991:416-417.
Google Scholar
|
[12] |
Fairhead J D, Bennett K J, Gordon D R H, et al. Euler: beyond the ;Black Box[C]// SEG Expanded Abstracts, 1994: 422-424.
Google Scholar
|
[13] |
Keating P B. Weighted Euler deconvolution of gravity data[J]. Geophysics, 1998, 63(5):1595-1603.
Google Scholar
|
[14] |
范美宁, 孙运生, 田庆君. 关于欧拉反褶积方法计算中的一点改进[J]. 物探化探计算技术, 2005, 27(2):171-174.
Google Scholar
|
[15] |
Fan M N, Sun Y S, Tian Q J. An improvement on calculation of Euler deconvolution[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2005, 27(2):171-174.
Google Scholar
|
[16] |
Davis K, Li Y. Enhancement of depth estimation techniques with amplitude analysis[C]// SEG Expanded Abstracts, 2009: 908-912.
Google Scholar
|
[17] |
周勇, 曹书锦, 侯萍萍, 等. 重力场欧拉反褶积最优解提取[J]. 物探化探计算技术, 2017, 39(5):598-604.
Google Scholar
|
[18] |
Zhou Y, Cao S J, Hou P P, et al. Extraction optimal solution of Euler deconvolution for gravity data[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017, 39(5):598-604.
Google Scholar
|
[19] |
Gerovska D, Araúzo-Bravo M J. Automatic interpretation of magnetic data based on Euler deconvolution with unprescribed structural index[J]. Computers & Geosciences, 2003, 29(8):949-960.
Google Scholar
|
[20] |
Ugalde H, Morris B. Cluster analysis of Euler deconvolution solutions: New filtering techniques and actual link to geological structure[C]// SEG Expanded Abstracts, 2008:794-798.
Google Scholar
|
[21] |
Salem A, Williams S, Fairhead D, et al. Interpretation of magnetic data using tilt-angle derivatives[J]. Geophysics, 2008, 73(1):L1-L10.
Google Scholar
|
[22] |
Beiki M. TSVD analysis of Euler deconvolution to improve estimating magnetic source parameters: An example from the Sele area, Sweden[J]. Journal of Applied Geophysics, 2013, 90:82-91.
Google Scholar
|
[23] |
Barbosa V C F, Silva J B C, Medeiros W E. Making Euler deconvolution applicable to small ground magnetic surveys[J]. Journal of Applied Geophysics, 2000, 43(1):55-68.
Google Scholar
|
[24] |
郭志宏. 航磁及梯度数据正反演解释方法技术实用化改进及应用[D]. 北京:中国地质大学(北京), 2004.
Google Scholar
|
[25] |
Guo Z H. The practical improvement of forward and inversion technique on aeromagnetic gradient data and its application[D]. Beijing:China University of Geoscience (Beijing), 2004.
Google Scholar
|
[26] |
鲁宝亮, 范美宁, 张原庆. 欧拉反褶积中构造指数的计算与优化选取[J]. 地球物理学进展, 2009, 24(3):1027-1031.
Google Scholar
|
[27] |
Lu B L, Fan M N, Zhang Y Q. The calculation and optimization of structure index in Euler deconvolution[J]. Progress in Geophysics, 2009, 24(3):1027-1031.
Google Scholar
|
[28] |
曹书锦, 朱自强, 鲁光银. 基于自适应模糊聚类分析的重力张量欧拉反褶积解[J]. 中南大学学报:自然科学版, 2012, 43(3):1033-1039.
Google Scholar
|
[29] |
Cao S J, Zhu Z Q, Lu G Y. Gravity tensor Euler Deconvolution solutions based on adaptive fuzzy cluster analysis[J]. Journal of Central South Unirersity:Science and Teclmology, 2012, 43(3):1033-1039.
Google Scholar
|
[30] |
Miller H G, Singh V. Potential field tilt—a new concept for location of potential field sources[J]. Journal of Applied Geophysics, 1994, 32(2-3):213-217.
Google Scholar
|
[31] |
王想, 李桐林. Tilt梯度及其水平导数提取重磁源边界位置[J]. 地球物理学进展, 2004, 19(3):625-630.
Google Scholar
|
[32] |
Wang X, Li T L. Locating the boundaries of magnetic or gravity sources with Tdr and Tdr-Thdr methods[J]. Progress in Geophysics, 2004, 19(3):625-630.
Google Scholar
|
[33] |
王万银, 邱之云, 杨永, 等. 位场边缘识别方法研究进展[J]. 地球物理学进展, 2010, 25(1):196-210.
Google Scholar
|
[34] |
Wang W Y, Qiu Z Y, Yang Y, et al. Some advances in the edge recognition of potential field[J]. Progress in Geophysics, 2010, 25(1):196-210.
Google Scholar
|
[35] |
刘鹏飞, 刘天佑, 杨宇山, 等. Tilt梯度算法的改进与应用:以江苏韦岗铁矿为例[J]. 地球科学:中国地质大学学报, 2015, 40(12):2091-2102.
Google Scholar
|
[36] |
Liu P F, Liu T Y, Yang Y S, et al. An improved tilt angle method and its application: A case of Weigang iron ore deposit, Jiangsu[J]. Earth Science-Journal of China University of Geosciences, 2015, 40(12):2091-2102.
Google Scholar
|
[37] |
Huang L, Zhang H L, Sekelania S, et al. An improved Tilt-Euler deconvolution and its application on a Fepolymetallic deposit[J]. Ore Geology Reviews, 2019, 114:103-114.
Google Scholar
|
[38] |
Ferreira F J F, de Souza J, de B. e S. Bongiolo A, et al. Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle[J]. Geophysics, 2013, 78(3):J33-J41.
Google Scholar
|
[39] |
Greene L C, Richards D R, Johnson R A. Crustal structure and tectonic evolution of the Anza rift, northern Kenya[J]. Tectonophysics, 1991, 197:203-211.
Google Scholar
|
[40] |
Bosworth W, Morley C K. Structural and stratigraphic evolution of the Anza rift, Kenya[J]. Tectonophysics, 1994, 236:93-115.
Google Scholar
|
[41] |
西安石油大学. 肯尼亚ANZA盆地9、10A区块重磁震联合解释报告[R]. 2007.
Google Scholar
|
[42] |
Xi'an Shiyou University. The research of integrated interpretation of gravity, aeromagnetics and seismic data of block 9 and 10A of ANZA basin in Kenya_Atlas contents[R]. 2007.
Google Scholar
|