[1] |
Heck B, Seitz K. A comparison of the Tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling[J]. J. Geodesy, 2007, 81(2):121-136.
Google Scholar
|
[2] |
杨学祥. 布格改正和地形改正的误差——关于区域重力测量中地形改正最大半径的讨论[J]. 地壳形变与地震, 1992(2):1-6.
Google Scholar
|
[3] |
Yang X X. Errors in Bouguer and topographic correction—Discussion on the maximum radius of topographic correction in regional gravity measurement[J]. Crustal Deformation and Earthquake, 1992(2):1-6.
Google Scholar
|
[4] |
梁青. 月球重力异常特征与三维密度成像研究[D]. 武汉:中国地质大学(武汉), 2010.
Google Scholar
|
[5] |
Liang Q. Gravity anomaly features and 3D density imaging of the moon[D]. Wuhan: China University of Geosciences (Wuhan), 2010.
Google Scholar
|
[6] |
Grombein T, Seitz K, Heck B. Optimized formulas for the gravitational field of a Tesseroid[J]. J.Geodesy, 2013, 87(7):645-660.
Google Scholar
|
[7] |
Uieda L, Barbosa V C FL. Fast nonlinear gravity inversion in spherical coordinates with application to the South American Moho[J]. Geophys. J. Int., 2017, 208(1):162-176.
Google Scholar
|
[8] |
Asgharzadeh M F Von Frese R R B Kim H R. Spherical prism magnetic effects by Gauss-Legendre quadrature integration[J]. Geophys. J. Int., 2008, 173(1):315-333.
Google Scholar
|
[9] |
Zhang Y, Wu Y L, Yan J G, et al. 3D inversion of full gravity gradient tensor data in spherical coordinate system using local north oriented frame[J]. Earth, Planets and Space, 2018, 70(58):1-23.
Google Scholar
|
[10] |
王祥, 郭良辉. 球坐标系密度界面反演方法及在华南大陆的应用[J]. 物探与化探, 2020, 44(5):1161-1171.
Google Scholar
|
[11] |
Wang X, Guo L H. Density interface inversion method in spherical coordinate and its application in South China mainland[J]. Geophysical and Geochemical Exploration, 2020, 44(5):1161-1171.
Google Scholar
|
[12] |
Hao A W, Guo L H, Wang X. The apparent density mapping approach in spherical coordinates and the crustal density distribution of Chinese mainland[J]. IEEE Access, 2019, 7(1):160705-160717.
Google Scholar
|
[13] |
Cui Y T, Guo L H. A wavenumber-domain iterative approach for 3D imaging of magnetic anomalies and gradients with depth constraints[J]. Journal of Geophysics and Engineering, 2019, 16(6):1032-1047.
Google Scholar
|
[14] |
Zhao G D, Chen B, Uieda L, et al. Efficient 3D large-scale forward-modeling and inversion of gravitational fields in spherical coordinates with application to lunar mascons[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4):4157-4173.
Google Scholar
|
[15] |
陈召曦, 孟小红, 郭良辉, 等. 基于GPU 并行的重力、重力梯度三维正演快速计算及反演策略[J]. 地球物理学报, 2012, 55(12):4069-4077.
Google Scholar
|
[16] |
Chen Z X, Meng X H, Guo L H, et al. Three-dimensional fast forward modeling and the inversion strategy for large scale gravity and gravimetry data based on GPU[J]. Chinese Journal of Geophysics, 2012, 55(12):4069-4077.
Google Scholar
|
[17] |
Hou Z L, Wei X H, Huang D N, et al. Full tensor gravity gradiometry data inversion: performance analysis of parallel computing algorithms[J]. Applied Geophysics, 2015, 12(3):292-302.
Google Scholar
|
[18] |
Hou Z L, Huang D N. Multi-GPU parallel algorithm design and analysis for improved inversion of probability tomography with gravity gradiometry data[J]. Journal of Applied Geophysics, 2017, 144:18-27.
Google Scholar
|
[19] |
Hou Z L, Huang D N, Wang E D, et al. 3D density inversion of gravity gradiometry data with a multilevel hybrid parallel algorithm[J]. Applied Geophysics, 2019, 16(2):141-152.
Google Scholar
|
[20] |
周雪, 于平, 翁爱华, 等. 基于MPI和OpenMP的重力及重力梯度数据并行正演算法研究[J]. 世界地质, 2018, 37(3):897-904.
Google Scholar
|
[21] |
Zhou X, Yu P, Weng A H, et al. Parallel forward modelling algorithm with gravity and gravity gradient data based on MPI and OpenMP[J]. Global Geology, 2018, 37(3):897-904.
Google Scholar
|
[22] |
陈国良. 并行计算:结构;算法;编程[M]. 北京: 高等教育出版社, 2003:83-88.
Google Scholar
|
[23] |
Chen G L. Parallel: construction; algorithms; programming [M]. Beijing: Higher Education Press, 2003:83-88.
Google Scholar
|
[24] |
Shen W S, Michael H R, Kang D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophys. J. Int., 2016, 206(2):954-979.
Google Scholar
|
[25] |
Brocher T M. Empirical relations between elastic wavespeeds and density in the Earth's crust[J]. Bull. Seismol. Soc. Am., 2005, 95(6):2081-2092.
Google Scholar
|
[26] |
Pavlis N K, Holmes S A, Kenyon S C, et al. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. J. Geophys. Res., 2012, 117(4):B04406.
Google Scholar
|