China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2021 Vol. 45, No. 6
Article Contents

WANG Bo, GUO Liang-Hui, CUI Ya-Tong, Wang Xiang. 2021. The approach to gravity forward calculation of 3D Tesseroid mesh model and its parallel algorithm. Geophysical and Geochemical Exploration, 45(6): 1597-1605. doi: 10.11720/wtyht.2021.0078
Citation: WANG Bo, GUO Liang-Hui, CUI Ya-Tong, Wang Xiang. 2021. The approach to gravity forward calculation of 3D Tesseroid mesh model and its parallel algorithm. Geophysical and Geochemical Exploration, 45(6): 1597-1605. doi: 10.11720/wtyht.2021.0078

The approach to gravity forward calculation of 3D Tesseroid mesh model and its parallel algorithm

  • The forward modeling of a 3D mesh model is the basis of gravity data inversion. High precision and high efficiency forward modeling is helpful to the improvement of the quality of inversion interpretation. In order to solve the problem of high precision and high efficiency gravity forward modeling based on a large-scale surface observation area, this paper presents the gravity anomaly forward modeling method and parallel algorithm of a 3D Tesseroid mesh model in the spherical coordinate system. The forward modeling uses the improved Gauss-Legendre Quadrature integration method to realize the high-precision gravity anomaly calculation based on a large-scale surface observation area, and also uses the MATLAB task parallel algorithm based on OpenMP to realize the high-efficiency forward modeling. The test on the 3D theoretical model and the Eastern China lithospheric model has verified the validity of the proposed method. This method can provide technical support for efficient large-scale gravity field simulation and 3D inversion.
  • 加载中
  • [1] Heck B, Seitz K. A comparison of the Tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling[J]. J. Geodesy, 2007, 81(2):121-136.

    Google Scholar

    [2] 杨学祥. 布格改正和地形改正的误差——关于区域重力测量中地形改正最大半径的讨论[J]. 地壳形变与地震, 1992(2):1-6.

    Google Scholar

    [3] Yang X X. Errors in Bouguer and topographic correction—Discussion on the maximum radius of topographic correction in regional gravity measurement[J]. Crustal Deformation and Earthquake, 1992(2):1-6.

    Google Scholar

    [4] 梁青. 月球重力异常特征与三维密度成像研究[D]. 武汉:中国地质大学(武汉), 2010.

    Google Scholar

    [5] Liang Q. Gravity anomaly features and 3D density imaging of the moon[D]. Wuhan: China University of Geosciences (Wuhan), 2010.

    Google Scholar

    [6] Grombein T, Seitz K, Heck B. Optimized formulas for the gravitational field of a Tesseroid[J]. J.Geodesy, 2013, 87(7):645-660.

    Google Scholar

    [7] Uieda L, Barbosa V C FL. Fast nonlinear gravity inversion in spherical coordinates with application to the South American Moho[J]. Geophys. J. Int., 2017, 208(1):162-176.

    Google Scholar

    [8] Asgharzadeh M F Von Frese R R B Kim H R. Spherical prism magnetic effects by Gauss-Legendre quadrature integration[J]. Geophys. J. Int., 2008, 173(1):315-333.

    Google Scholar

    [9] Zhang Y, Wu Y L, Yan J G, et al. 3D inversion of full gravity gradient tensor data in spherical coordinate system using local north oriented frame[J]. Earth, Planets and Space, 2018, 70(58):1-23.

    Google Scholar

    [10] 王祥, 郭良辉. 球坐标系密度界面反演方法及在华南大陆的应用[J]. 物探与化探, 2020, 44(5):1161-1171.

    Google Scholar

    [11] Wang X, Guo L H. Density interface inversion method in spherical coordinate and its application in South China mainland[J]. Geophysical and Geochemical Exploration, 2020, 44(5):1161-1171.

    Google Scholar

    [12] Hao A W, Guo L H, Wang X. The apparent density mapping approach in spherical coordinates and the crustal density distribution of Chinese mainland[J]. IEEE Access, 2019, 7(1):160705-160717.

    Google Scholar

    [13] Cui Y T, Guo L H. A wavenumber-domain iterative approach for 3D imaging of magnetic anomalies and gradients with depth constraints[J]. Journal of Geophysics and Engineering, 2019, 16(6):1032-1047.

    Google Scholar

    [14] Zhao G D, Chen B, Uieda L, et al. Efficient 3D large-scale forward-modeling and inversion of gravitational fields in spherical coordinates with application to lunar mascons[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4):4157-4173.

    Google Scholar

    [15] 陈召曦, 孟小红, 郭良辉, 等. 基于GPU 并行的重力、重力梯度三维正演快速计算及反演策略[J]. 地球物理学报, 2012, 55(12):4069-4077.

    Google Scholar

    [16] Chen Z X, Meng X H, Guo L H, et al. Three-dimensional fast forward modeling and the inversion strategy for large scale gravity and gravimetry data based on GPU[J]. Chinese Journal of Geophysics, 2012, 55(12):4069-4077.

    Google Scholar

    [17] Hou Z L, Wei X H, Huang D N, et al. Full tensor gravity gradiometry data inversion: performance analysis of parallel computing algorithms[J]. Applied Geophysics, 2015, 12(3):292-302.

    Google Scholar

    [18] Hou Z L, Huang D N. Multi-GPU parallel algorithm design and analysis for improved inversion of probability tomography with gravity gradiometry data[J]. Journal of Applied Geophysics, 2017, 144:18-27.

    Google Scholar

    [19] Hou Z L, Huang D N, Wang E D, et al. 3D density inversion of gravity gradiometry data with a multilevel hybrid parallel algorithm[J]. Applied Geophysics, 2019, 16(2):141-152.

    Google Scholar

    [20] 周雪, 于平, 翁爱华, 等. 基于MPI和OpenMP的重力及重力梯度数据并行正演算法研究[J]. 世界地质, 2018, 37(3):897-904.

    Google Scholar

    [21] Zhou X, Yu P, Weng A H, et al. Parallel forward modelling algorithm with gravity and gravity gradient data based on MPI and OpenMP[J]. Global Geology, 2018, 37(3):897-904.

    Google Scholar

    [22] 陈国良. 并行计算:结构;算法;编程[M]. 北京: 高等教育出版社, 2003:83-88.

    Google Scholar

    [23] Chen G L. Parallel: construction; algorithms; programming [M]. Beijing: Higher Education Press, 2003:83-88.

    Google Scholar

    [24] Shen W S, Michael H R, Kang D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophys. J. Int., 2016, 206(2):954-979.

    Google Scholar

    [25] Brocher T M. Empirical relations between elastic wavespeeds and density in the Earth's crust[J]. Bull. Seismol. Soc. Am., 2005, 95(6):2081-2092.

    Google Scholar

    [26] Pavlis N K, Holmes S A, Kenyon S C, et al. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. J. Geophys. Res., 2012, 117(4):B04406.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(894) PDF downloads(95) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint