| [1] | 汪闻韶. 土工地震减灾工程中的一个重要参量——剪切波速[J]. 水利学报, 1994, 15(3):80-83. 						Google Scholar
						 | 
					
									 					| [2] | Wang W S. An important parameter in geotechnical engineering for earthquake disaster mitigation—shear wave velocity[J]. Journal of Hydraulic Engineering, 1994, 15(3):80-83. 						Google Scholar
						 | 
					
									 					| [3] | 毕兴锁. 场地剪切波速在岩土工程中的应用[J]. 山西建筑, 1992(1):23-29. 						Google Scholar
						 | 
					
									 					| [4] | Bi X S. Application of site shear wave velocity in geotechnical engineering[J]. Shanxi Architecture, 1992(1):23-29. 						Google Scholar
						 | 
					
									 					| [5] | 陈昌军. 场地剪切波波速测试及其应用[J]. 华南地震, 2003, 23(4):81-86. 						Google Scholar
						 | 
					
									 					| [6] | Chen C J. Shear wave velocity testing of building site and its application[J]. South China Journal of Seismology, 2003, 23(4):81-86. 						Google Scholar
						 | 
					
									 					| [7] | Hunter J A, Pullan S E, Burns R A, et al. Downhole seismic logging for high-resolution reflection surveying in unconsolidated overburden[J]. Geophysics, 1998, 63(4):1371-1384. 						Google Scholar
						 | 
					
									 					| [8] | Hunter J A, Benjumea B, Harris J B, et al. Surface and downhole shear wave seismic methods for thick soil site investigations[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9-12):931-941. 						Google Scholar
						 | 
					
									 					| [9] | Schneider J A, Mayne P W, Rix G J. Geotechnical site characterization in the greater Memphis area using cone penetration tests[J]. Engineering Geology, 2001, 62(1-3):169-184. 						Google Scholar
						 | 
					
									 					| [10] | Kayabasi A, Gokceoglu C. Liquefaction potential assessment of a region using different techniques (Tepebasi,Eski?ehir,Turkey)[J]. Engineering Geology, 2018, 246:139-161. 						Google Scholar
						 | 
					
									 					| [11] | Stokoe K H, Joh S H, Woods R D. Some contributions of in situ geophysical measurements to solving geotechnical engineering problems[C]// International site characterization ISC'2 Porto,Portugal, 2004:19-42. 						Google Scholar
						 | 
					
									 					| [12] | Garofalo F, Foti S, Hollender F, et al. InterPACIFIC project:Comparison of invasive and non-invasive methods for seismic site characterization.Part II:Inter-comparison between surface-wave and borehole methods[J]. Soil Dynamics & Earthquake Engineering, 2016, 82:241-254. 						Google Scholar
						 | 
					
									 					| [13] | 陈云敏, 吴世明, 曾国熙. 表面波谱分析法及其应用[J]. 岩土工程学报, 1992, 14(3):61-65. 						Google Scholar
						 | 
					
									 					| [14] | Chen Y M, Wu S M, Zeng G X. The spectral analysis of surface waves and its application[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(3):61-65. 						Google Scholar
						 | 
					
									 					| [15] | ASTM. Standard test methods for downhole seismic testing[M]// Pennsylvania:Annual book of ASTM standard, 2007. 						Google Scholar
						 | 
					
									 					| [16] | 侯兴民, 杨学山, 廖振鹏, 等. 基于互相关函数的单孔法波速测试优化算法[J]. 岩土力学, 2006, 27(7):1161-1165. 						Google Scholar
						 | 
					
									 					| [17] | Hou X M, Yang X S, Liao Z P, et al. An optimized approach for single-hole method of shear wave velocity measurement based on correlation functions[J]. Rock and Soil Mechanics, 2006, 27(7):1161-1165. 						Google Scholar
						 | 
					
									 					| [18] | Baziw E J. Digital filtering techniques for interpreting seismic cone data[J]. Journal of Geotechnical Engineering, 1993, 119(6):998-1018. 						Google Scholar
						 | 
					
									 					| [19] | Crice D. Borehole shear-wave surveys for engineering site investigations[M]. Saratoga:Geostuff, 2002:1-14. 						Google Scholar
						 | 
					
									 					| [20] | Campanella R G, Stewart W P. Seismic cone analysis using digital signal processing for dynamic site characterization[J]. Canadian Geotechnical Journal, 1992, 29(3):477-486. 						Google Scholar
						 | 
					
									 					| [21] | Ishihara K. Soil behaviour in earthquake geotechnics [M]. Oxford: Clarendon Press, 1996. 						Google Scholar
						 | 
					
									 					| [22] | 廖振鹏. 工程波动理论导论(第二版)[M]. 北京: 科学出版社, 2002. 						Google Scholar
						 | 
					
									 					| [23] | Liao Z P. Introduction to wave motion theories in engineering (Second Edition) [M]. Beijing: Science Press, 2002. 						Google Scholar
						 | 
					
									 					| [24] | 廖振鹏, 周正华, 张艳红. 波动数值模拟中透射边界的稳定实现[J]. 地球物理学报, 2002, 45(4):533-545. 						Google Scholar
						 | 
					
									 					| [25] | Liao Z P, Zhou Z H, Zhang Y H. Stable implementation of transmitting boundary in numerical simulation of wave motion[J]. Chinese Journal of Geophysics, 2002, 45(4):533-545. 						Google Scholar
						 | 
					
									 					| [26] | 周正华, 廖振鹏. 消除多次透射公式飘移失稳的措施[J]. 力学学报, 2001, 33(4):550-554. 						Google Scholar
						 | 
					
									 					| [27] | Zhou Z H, Liao Z P. A mersure for eliminating drift instability of the multi-transmitting formula[J]. Acta Mechanica Sinica, 2001, 33(4):550-554. 						Google Scholar
						 | 
					
									 					| [28] | 董青, 周正华, 苏杰, 等. 消除多次透射公式高频振荡失稳的一种措施[J]. 震灾防御技术, 2018, 13(3):571-577. 						Google Scholar
						 | 
					
									 					| [29] | Dong Q, Zhou Z H, Su J, et al. The measure against high frequency oscillating instability of multi-transmitting formula[J]. Technology for Earthquake Disaster Prevention, 2018, 13(3):571-577. 						Google Scholar
						 | 
					
									 					| [30] | Sanchez-Salinero I, Roesset J M, Stokoe K H Ⅱ. Analytical studies of body wave propagation and attenuation [R]. Austin:Geotechnical Engineering Center the University of Texas at Austin, 1986. 						Google Scholar
						 | 
					
									 					| [31] | Aki K, Richards P G. Quantitative seismology theory[M]. Mill Valley:University Science Books, 2002. 						Google Scholar
						 | 
					
									 					| [32] | Chao C C. Dynamical response of an elastic half-space to tangential surface loadings[J]. Journal of Applied Mechanics, 1960, 27(3):559-567. 						Google Scholar
						 |