China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2021 Vol. 45, No. 5
Article Contents

XIAO Yan-Shan, ZHOU Zheng-Hua, SU Jie, WEI Xin. 2021. Discussion about the theoretical basis of the down-hole method for shear wave velocity test under surface forward and reverse horizontal hammer strikes. Geophysical and Geochemical Exploration, 45(5): 1288-1294. doi: 10.11720/wtyht.2021.0020
Citation: XIAO Yan-Shan, ZHOU Zheng-Hua, SU Jie, WEI Xin. 2021. Discussion about the theoretical basis of the down-hole method for shear wave velocity test under surface forward and reverse horizontal hammer strikes. Geophysical and Geochemical Exploration, 45(5): 1288-1294. doi: 10.11720/wtyht.2021.0020

Discussion about the theoretical basis of the down-hole method for shear wave velocity test under surface forward and reverse horizontal hammer strikes

  • The down-hole method under surface horizontal forward and reverse hammer excitation is frequently used for on-site tests of shear wave velocity.Based on the dynamic finite element method,this paper establishes a three-dimensional analysis model of the down-hole method used for shear wave velocity tests under the surface horizontal forward and reverse hammer excitation.Meanwhile,it determines the solutions of the wave response of linear elastic half space under the surface horizontal hammer excitation through explicit stepwise integration of time-domain lumped mass dynamic finite element.Furthermore,it analyzes the waveform characteristics of points at different depths and the rationality of the theoretical basis of shear wave (S-wave) velocity tests under the surface horizontal forward and reverse hammer excitation.As indicated by the results,the theoretical basis of S-wave velocity tests (i.e.,the non-inversion of P-wave onset but inversion of S-wave onset) using the down-hole method under surface horizontal forward and reverse hammer excitation is not tenable.In addition,the numerical simulation results have been further verified reasonable by the analytical solution of the wave motion in the linear elastic half space under the surface horizontal forward and reverse excitation.
  • 加载中
  • [1] 汪闻韶. 土工地震减灾工程中的一个重要参量——剪切波速[J]. 水利学报, 1994, 15(3):80-83.

    Google Scholar

    [2] Wang W S. An important parameter in geotechnical engineering for earthquake disaster mitigation—shear wave velocity[J]. Journal of Hydraulic Engineering, 1994, 15(3):80-83.

    Google Scholar

    [3] 毕兴锁. 场地剪切波速在岩土工程中的应用[J]. 山西建筑, 1992(1):23-29.

    Google Scholar

    [4] Bi X S. Application of site shear wave velocity in geotechnical engineering[J]. Shanxi Architecture, 1992(1):23-29.

    Google Scholar

    [5] 陈昌军. 场地剪切波波速测试及其应用[J]. 华南地震, 2003, 23(4):81-86.

    Google Scholar

    [6] Chen C J. Shear wave velocity testing of building site and its application[J]. South China Journal of Seismology, 2003, 23(4):81-86.

    Google Scholar

    [7] Hunter J A, Pullan S E, Burns R A, et al. Downhole seismic logging for high-resolution reflection surveying in unconsolidated overburden[J]. Geophysics, 1998, 63(4):1371-1384.

    Google Scholar

    [8] Hunter J A, Benjumea B, Harris J B, et al. Surface and downhole shear wave seismic methods for thick soil site investigations[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9-12):931-941.

    Google Scholar

    [9] Schneider J A, Mayne P W, Rix G J. Geotechnical site characterization in the greater Memphis area using cone penetration tests[J]. Engineering Geology, 2001, 62(1-3):169-184.

    Google Scholar

    [10] Kayabasi A, Gokceoglu C. Liquefaction potential assessment of a region using different techniques (Tepebasi,Eski?ehir,Turkey)[J]. Engineering Geology, 2018, 246:139-161.

    Google Scholar

    [11] Stokoe K H, Joh S H, Woods R D. Some contributions of in situ geophysical measurements to solving geotechnical engineering problems[C]// International site characterization ISC'2 Porto,Portugal, 2004:19-42.

    Google Scholar

    [12] Garofalo F, Foti S, Hollender F, et al. InterPACIFIC project:Comparison of invasive and non-invasive methods for seismic site characterization.Part II:Inter-comparison between surface-wave and borehole methods[J]. Soil Dynamics & Earthquake Engineering, 2016, 82:241-254.

    Google Scholar

    [13] 陈云敏, 吴世明, 曾国熙. 表面波谱分析法及其应用[J]. 岩土工程学报, 1992, 14(3):61-65.

    Google Scholar

    [14] Chen Y M, Wu S M, Zeng G X. The spectral analysis of surface waves and its application[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(3):61-65.

    Google Scholar

    [15] ASTM. Standard test methods for downhole seismic testing[M]// Pennsylvania:Annual book of ASTM standard, 2007.

    Google Scholar

    [16] 侯兴民, 杨学山, 廖振鹏, 等. 基于互相关函数的单孔法波速测试优化算法[J]. 岩土力学, 2006, 27(7):1161-1165.

    Google Scholar

    [17] Hou X M, Yang X S, Liao Z P, et al. An optimized approach for single-hole method of shear wave velocity measurement based on correlation functions[J]. Rock and Soil Mechanics, 2006, 27(7):1161-1165.

    Google Scholar

    [18] Baziw E J. Digital filtering techniques for interpreting seismic cone data[J]. Journal of Geotechnical Engineering, 1993, 119(6):998-1018.

    Google Scholar

    [19] Crice D. Borehole shear-wave surveys for engineering site investigations[M]. Saratoga:Geostuff, 2002:1-14.

    Google Scholar

    [20] Campanella R G, Stewart W P. Seismic cone analysis using digital signal processing for dynamic site characterization[J]. Canadian Geotechnical Journal, 1992, 29(3):477-486.

    Google Scholar

    [21] Ishihara K. Soil behaviour in earthquake geotechnics [M]. Oxford: Clarendon Press, 1996.

    Google Scholar

    [22] 廖振鹏. 工程波动理论导论(第二版)[M]. 北京: 科学出版社, 2002.

    Google Scholar

    [23] Liao Z P. Introduction to wave motion theories in engineering (Second Edition) [M]. Beijing: Science Press, 2002.

    Google Scholar

    [24] 廖振鹏, 周正华, 张艳红. 波动数值模拟中透射边界的稳定实现[J]. 地球物理学报, 2002, 45(4):533-545.

    Google Scholar

    [25] Liao Z P, Zhou Z H, Zhang Y H. Stable implementation of transmitting boundary in numerical simulation of wave motion[J]. Chinese Journal of Geophysics, 2002, 45(4):533-545.

    Google Scholar

    [26] 周正华, 廖振鹏. 消除多次透射公式飘移失稳的措施[J]. 力学学报, 2001, 33(4):550-554.

    Google Scholar

    [27] Zhou Z H, Liao Z P. A mersure for eliminating drift instability of the multi-transmitting formula[J]. Acta Mechanica Sinica, 2001, 33(4):550-554.

    Google Scholar

    [28] 董青, 周正华, 苏杰, 等. 消除多次透射公式高频振荡失稳的一种措施[J]. 震灾防御技术, 2018, 13(3):571-577.

    Google Scholar

    [29] Dong Q, Zhou Z H, Su J, et al. The measure against high frequency oscillating instability of multi-transmitting formula[J]. Technology for Earthquake Disaster Prevention, 2018, 13(3):571-577.

    Google Scholar

    [30] Sanchez-Salinero I, Roesset J M, Stokoe K H Ⅱ. Analytical studies of body wave propagation and attenuation [R]. Austin:Geotechnical Engineering Center the University of Texas at Austin, 1986.

    Google Scholar

    [31] Aki K, Richards P G. Quantitative seismology theory[M]. Mill Valley:University Science Books, 2002.

    Google Scholar

    [32] Chao C C. Dynamical response of an elastic half-space to tangential surface loadings[J]. Journal of Applied Mechanics, 1960, 27(3):559-567.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(520) PDF downloads(84) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint