China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2021 Vol. 45, No. 5
Article Contents

XIE Qing-Hui, JIANG Li-Wei, ZHAO Chun-Duan, WANG Zhong-Da, TANG Xie-Hua, LUO Yu-Feng. 2021. Application study of improving the precision of the ant-tracking-based fracture prediction technique. Geophysical and Geochemical Exploration, 45(5): 1295-1302. doi: 10.11720/wtyht.2021.1208
Citation: XIE Qing-Hui, JIANG Li-Wei, ZHAO Chun-Duan, WANG Zhong-Da, TANG Xie-Hua, LUO Yu-Feng. 2021. Application study of improving the precision of the ant-tracking-based fracture prediction technique. Geophysical and Geochemical Exploration, 45(5): 1295-1302. doi: 10.11720/wtyht.2021.1208

Application study of improving the precision of the ant-tracking-based fracture prediction technique

  • The YS1 area in Sichuan basin has undergone multiple stages of tectonic evolution.The faults are characterized by multiple stages and multiple strikes,and serious mud losses occurred in the drilled well.It is difficult to finely characterize fracture and analyze structural development when the conventional seismic interpretation method is used.In this study,according to the actual situation,ant tracking technology was used to predict fractures,whose accuracy was improved by noise reduction,continuity enhancement,fault boundaries height,and fake structures elimination.The process is as follows:firstly,the input seismic data volume is pre-processed by structure-oriented filtering and discontinuity detection,then the ant tracking parameter settings are optimized,and finally the ant tracking under the occurrence control is performed.The data can not only be used to assist fault interpretation but also provide a data basis for subsequent fault development analysis and horizontal well location deployment.
  • 加载中
  • [1] 梁志强. 不同尺度裂缝的叠后地震预测技术研究[J]. 石油物探, 2019, 58(5):766-772.

    Google Scholar

    [2] Liang Z Q. Poststack seismic prediction techniques for fractures of different scales[J]. Geophysical Prospecting for Petroleum, 2019, 58(5):766-772.

    Google Scholar

    [3] 董马超, 吕海涛, 蒲仁海, 等. 塔中东部走滑断裂带特征及油气地质意义[J]. 石油物探, 2016, 55(6):840-850.

    Google Scholar

    [4] Dong M C, Lyu H T, Pu R H, et al. Characteristics of strike-slip fault and its hydrocarbon geological significance in the eastern of central Tarism Basin[J]. Geophysical Prospecting for Petroleum, 2016, 55(6):840-850.

    Google Scholar

    [5] 刘振峰, 曲寿利, 孙建国, 等. 地震裂缝预测技术研究进展[J]. 石油物探, 2012, 51(2):191-198.

    Google Scholar

    [6] Liu Z F, Qu S L, Sun J G, et al. Progress of seismic fracture characterization technology[J]. Geophysical Prospecting for Petroleum, 2012, 51(2):191-198.

    Google Scholar

    [7] 石学文, 佟彦明, 刘文平, 等. 页岩储层地震尺度断裂系统分析及其石油地质意义——以四川盆地长宁地区宁201井区为例[J]. 海相油气地质, 2019, 24(4):87-96.

    Google Scholar

    [8] Shi X W, Tong Y M, Liu W P, et al. Analysis of seismic-scale fracture system of shale reservoir and its petroleum significance:A case study of well Ning 201 area of Changning Block, Sichuan Basin[J]. Marine Origin Petroleum Geology, 2019, 24(4):87-96.

    Google Scholar

    [9] 朱宝衡. 改进的蚂蚁追踪裂缝检测算法及其应用研究[J]. 海洋石油, 2019, 39(3):27-32.

    Google Scholar

    [10] Zhu B H. Improved ant tracking crack detection algorithm and its application[J]. Offshore Oil, 2019, 39(3):27-32.

    Google Scholar

    [11] Dorigo M, Maniezzo V, Colorni A. Ant system:Optimization by a colony of cooperating agents[J]. IEEE Transactions on Cybernetics, 1996, 26(1):29-41.

    Google Scholar

    [12] 周文, 尹太举, 张亚春, 等. 蚂蚁追踪技术在裂缝预测中的应用——以青西油田下沟组为例[J]. 岩性油气藏, 2015, 27(6):111-118.

    Google Scholar

    [13] Zhou W, Yin T J, Zhang Y C, et al. Application of ant tracking technology to fracture prediction:A case study from Xiagou Formation in Qingxi Oilfield[J]. Northwest Oil & Gas Exploration, 2015, 27(6):111-118.

    Google Scholar

    [14] 王军, 李艳东, 甘利灯. 基于蚂蚁体各向异性的裂缝表征方法[J]. 石油地球物理勘探, 2013, 48(5):763-769.

    Google Scholar

    [15] Wang J, Li Y D, Gan L D. Fracture characterization based on azimuthal anisotropy of ant-tracking attribute volumes[J]. Oil Geophysical Prospecting, 2013, 48(5):763-769.

    Google Scholar

    [16] Sait B, Matthew J P. Fault and fracture distribution within a tight-gas sandstone reservoir:Mesaverde Group,Mamm Creek Field,Piceance Basin,Colorado,USA[J]. Petroleum Geoscience, 2013, 19(8):203-222.

    Google Scholar

    [17] Andreas W, Mohamed S S. Integration of surface/subsurface techniques reveals faults in Gulf of Suez oilfields[J]. Petroleum Geoscience, 2011, 17(5):165-179.

    Google Scholar

    [18] 孙乐, 王志章, 李汉林, 等. 基于蚂蚁算法的断裂追踪技术在乌夏地区的应用[J]. 断块油气田, 2014, 21(6):716-721.

    Google Scholar

    [19] Sun L, Wang Z Z, Li H L, et al. Application of fault tracking technology based on ant colony algorithm in Wuxia Area[J]. Fault-Block Oil & Gas Field, 2014, 21(6):716-721.

    Google Scholar

    [20] 李楠, 王龙颖, 黄胜兵, 等. 利用高清蚂蚁体精细解释复杂断裂带[J]. 石油地球物理勘探, 2019, 54(1):182-190.

    Google Scholar

    [21] Li N, Wang L Y, Huang S B, et al. 3D seismic fine structural interpretation in complex fault zones based on the high-definition ant-tracking attribute volume[J]. Oil Geophysical Prospecting, 2019, 54(1):182-190.

    Google Scholar

    [22] 孙莎莎, 芮昀, 董大忠, 等. 中扬子地区晚奥陶世—早志留世古地理演化及页岩沉积模式[J]. 石油与天然气地质, 2018, 39(6):1087-1106.

    Google Scholar

    [23] Sun S S, Rui Y, Dong D Z, et al. Paleogeographic evolution of the late Ordovician-early Silurian in upper and middle Yangtze regions and depositional model of shale[J]. Oil & Gas Geology, 2018, 39(6):1087-1106.

    Google Scholar

    [24] 郑浩, 蔡杰雄, 王静波. 基于构造导向滤波的高斯束层析速度建模方法及其应用[J]. 物探与化探, 2020, 44(2):372-380.

    Google Scholar

    [25] Zheng H, Cai J X, Wang J B. Gaussian beam tomography with structure-filtering and its applications[J]. Geophysical and Geochemical Exploration, 2020, 44(2):372-380.

    Google Scholar

    [26] 赵明章, 范雪辉, 刘春芳, 等. 利用构造导向滤波技术识别复杂断块圈闭[J]. 石油地球物理勘探, 2011, 46(s1):128-133.

    Google Scholar

    [27] Zhao M Z, Fan X H, Liu C F, et al. Complex fault-block traps identification with structure-oriented filter[J]. Oil Geophysical Prospecting, 2011, 46(s1):128-133.

    Google Scholar

    [28] Fehmers G C, Hocker C F W. Fast Structural interpretation with structure-oriented filtering[J]. Geophysices, 2003, 68(4):1286-1293.

    Google Scholar

    [29] 李培培, 赵汝敏, 杨松岭, 等. 构造曲率与振幅曲率在地震资料解释中的应用[J]. 物探与化探, 2013, 37(5):916-920.

    Google Scholar

    [30] Li P P, Zhao R M, Yang S L, et al. The application structural curvature and amplitude curvature attribute to seismic interpretation[J]. Geophysical and Geochemical Exploration, 2013, 37(5):916-920.

    Google Scholar

    [31] 李建雄, 崔全章, 魏小东. 地震属性在微断层解释中的应用[J]. 石油地球物理勘探, 2011, 46(6):925-929.

    Google Scholar

    [32] Li J X, Cui Q Z, Wei X D. Application of seismic attributes in micro-fault interpretation[J]. Oil Geophysical Prospecting, 2011, 46(6):925-929.

    Google Scholar

    [33] 张永华, 张悦, 杜伟, 等. 混沌属性预测泌阳凹陷陡坡带小型砂砾岩体[J]. 特种油气藏, 2016, 23(3):11-15.

    Google Scholar

    [34] Zhang Y H, Zhang Y, Du W, et al. Application of chaos attributes to predict the small-scale glutenite bodies in the steep-slope zone of Biyang depression[J]. Special Oil & Gas Reservoirs, 2016, 23(3):11-15.

    Google Scholar

    [35] 卢美月, 汤子余, 张永健. 蚂蚁追踪技术在Plutonio油田X区块中的应用[J]. 科学技术与工程, 2020, 20(8):2992-2996.

    Google Scholar

    [36] Lu M Y, Tang Z Y, Zhang Y J. Application of ant tracking technology in X block of Plutonio oilfield[J]. Science Technology and Engineering, 2020, 20(8):2992-2996.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1076) PDF downloads(228) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint