China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2021 Vol. 45, No. 5
Article Contents

LIU Hai-Ning, HAN Hong-Wei, WEI Wen, ZHANG Yun-Yin, ZHAO Jing-Pu. 2021. Seismic prediction of favorable limestone reservoirs in the fourth member of Shahejie Formation in YD high density 3D area. Geophysical and Geochemical Exploration, 45(5): 1281-1287. doi: 10.11720/wtyht.2021.1368
Citation: LIU Hai-Ning, HAN Hong-Wei, WEI Wen, ZHANG Yun-Yin, ZHAO Jing-Pu. 2021. Seismic prediction of favorable limestone reservoirs in the fourth member of Shahejie Formation in YD high density 3D area. Geophysical and Geochemical Exploration, 45(5): 1281-1287. doi: 10.11720/wtyht.2021.1368

Seismic prediction of favorable limestone reservoirs in the fourth member of Shahejie Formation in YD high density 3D area

  • Yidong fault zone is rich in oil and gas,and the exploration space of the tertiary lithology body is large,but the exploration degree is low.The main reason restricting the exploration efficiency is that the reservoir heterogeneity is strong and the distribution rule is complex.At the same time,due to the limitation of seismic data and conventional seismic prediction technology,the favorable reservoir seismic prediction of lithologic body is difficult.Based on the high density three-dimensional azimuth seismic data of YD area,the authors carried out the research on the favorable reservoir seismic prediction of the fourth member of Shahejie Formation.Firstly,the difference of azimuth seismic properties was used to predict the distribution of fractures in the reservoir.Then the anisotropic reservoir prediction technique based on anisotropic parameter inversion was used to describe the anisotropic characteristics of the reservoir.Finally,combined with the results of two kinds of seismic prediction techniques,with the fracture distribution as the main predicted object and the reservoir anisotropy characteristic as the restricted condition,the authors described the fracture development degree of the limestone reservoir in the fourth member of Shahejie Formation comprehensively and improved the prediction accuracy of the favorable limestone reservoir in the fourth member of Shahejie Formation.
  • 加载中
  • [1] 刘振峰, 曲寿利, 孙建国, 等. 地震裂缝预测技术研究进展[J]. 石油物探, 2012, 51(2):191-198.

    Google Scholar

    [2] Liu Z F, Qu S L, Sun J G, et al. Progress of seismic fracture characterization technology[J]. Geophysical Prospecting for Petroleum, 2012, 51(2):191-198.

    Google Scholar

    [3] 党青宁, 崔永福, 陈猛, 等. OVT域叠前裂缝预测技术——以塔里木盆地塔中ZG地区奥陶系碳酸盐岩为例[J]. 物探与化探, 2016, 40(2):398-404.

    Google Scholar

    [4] Dang Q N, Cui Y F, Chen M, et al. Fracture detection with prestack seismic data in OVT domain:A case study of the Ordovician carbonate reservoir in ZG area of Tazhong district in Tarim Basin[J]. Geophysical and Geochemical Exploration, 2016, 40(2):398-404.

    Google Scholar

    [5] 刘成斋. 胜利探区地震采集技术发展历程回顾与启示[J]. 石油与天然气地质, 2008, 29(3):397-404, 396.

    Google Scholar

    [6] Liu C Z. Review and enlightenment of seismic acquisition technology development in Shengli exploration area[J]. Oil & Gas Geology, 2008, 29(3):397-404,396.

    Google Scholar

    [7] 吕公河, 张光德, 尚应军, 等. 胜利油田高精度三维地震采集技术实践与认识[J]. 石油物探, 2010, 49(6):562-572.

    Google Scholar

    [8] Lyu G H, Zhang G D, Shang Y J, et al. Research and application of high-precision 3D seismic data acquisition technology in Shengli Oilfield[J]. Geophysical Prospecting for Petroleum, 2010, 49(6):562-572.

    Google Scholar

    [9] 尚新民, 芮拥军, 石林光, 等. 胜利油田高密度地震探索与实践[J]. 地球物理学进展, 2018, 33(4):1545-1553.

    Google Scholar

    [10] Shang X M, Rui Y J, Shi L G, et al. Exploration and practice of high-density seismic survey in Shengli Oilfield[J]. Progress in Geophysics, 2018, 33(4):1545-1553.

    Google Scholar

    [11] 周锦钟, 张金海, 牛全兵, 等. 柴达木盆地尖顶山地区低频可控震源“两宽一高地震资料处理关键技术应用研究[J]. 物探与化探, 2020, 44(2):313-320.

    Google Scholar

    [12] Zhou J Z, Zhang J H, Niu Q B, et al. The key technique application research on low frequency vibrator “two-wide and one high seismic data processing in Jiandingshan area of Qaidam Basin[J]. Geophysical and Geochemical Exploration, 2020, 44(2):313-320.

    Google Scholar

    [13] 叶树刚. 全数字高密度三维地震勘探技术在小断层精细勘查中的应用研究[J]. 煤炭技术, 2017, 36(2):102-104.

    Google Scholar

    [14] Ye S G. Study on application of all-digital high density 3D seismic exploration in fine exploration of small faults[J]. Coal Technology, 2017, 36(2):102-104.

    Google Scholar

    [15] 白旭明, 叶秋焱, 袁胜辉, 等. 实现高密度宽方位三维地震采集的垂直观测法[J]. 物探与化探, 2014, 38(4):769-773.

    Google Scholar

    [16] Bai X M, Ye Q Y, Yuan S H, et al. Vertical observation method for implementation of width azimuth and high density 3D collection[J]. Geophysical and Geochemical Exploration, 2014, 38(4):769-773.

    Google Scholar

    [17] 张红文, 刘喜恒, 周兴海, 等. 全方位偏移成像技术在南马庄潜山构造带的应用[J]. 物探与化探, 2020, 44(1):25-33.

    Google Scholar

    [18] Zhang H W, Liu X H, Zhou X H, et al. The application of full azimuth migration imagine technology to Nanmazhuang buried hill tectonic belt[J]. Geophysical and Geochemical Exploration, 2020, 44(1):25-33.

    Google Scholar

    [19] 马光克, 李雷, 刘巍, 等. 高密度地震勘探技术在莺歌海盆地M气田岩性勘探中的应用[J]. 石油物探, 2019, 58(4):591-599.

    Google Scholar

    [20] Ma G K, Li L, Liu W, et al. Application of high-density seismic acquisition technology for lithological exploration of M gas field in the Yinggehai Basin[J]. Geophysical Prospecting for Petroleum, 2019, 58(4):591-599.

    Google Scholar

    [21] 李雷涛, 肖秋红, 肖伟. 优化的方位各向异性裂缝预测方法及应用[J]. 断块油气田, 2016, 23(4):455-459.

    Google Scholar

    [22] Li L T, Xiao Q H, Xiao W. An optimized method of fracture prediction based on P-wave anisotropy and its application[J]. Fault-Block Oil & Gas Field, 2016, 23(4):455-459.

    Google Scholar

    [23] 周连敏. 倾角方位属性在曲流河河道砂体预测中的应用[J]. 断块油气田, 2017, 24(4):471-473.

    Google Scholar

    [24] Zhou L M. Application of DipAzi attribute to predicting channel sandstone of meandering river[J]. Fault-Block Oil & Gas Field, 2017, 24(4):471-473.

    Google Scholar

    [25] 韩霄. 邵家洼陷沙四段碳酸盐岩储层特征研究[D]. 青岛:中国石油大学(华东), 2011.

    Google Scholar

    [26] Han X. Carbonate reservoir characteristics of the fourth member of Shahejie formation in Shaojia Sag[D]. Qingdao:China University of Petroleum(East China), 2011.

    Google Scholar

    [27] 杨勇强. 济阳坳陷湖相碳酸盐岩优质储层成因机理[D]. 青岛:中国石油大学(华东), 2015.

    Google Scholar

    [28] Yang Y Q. The research on genesis mechanism of high quality lacustrine carbonate reservoir in Jiyang Depression[D]. Qingdao:China University of Petroleum (East China), 2015.

    Google Scholar

    [29] 刘雅利, 刘鹏, 伊伟. 渤南洼陷沙四上亚段沉积相及有利储集层分布[J]. 新疆石油地质, 2014, 35(1):39-44.

    Google Scholar

    [30] Liu Y L, Liu P, Yi W. Depositional facies and favorable reservoir distribution of sha 4 upper member of Shahejie formation in Bonan Sub Sag[J]. Xinjiang Petroleum Geology, 2014, 35(1):39-44.

    Google Scholar

    [31] 朱定蓉, 苏朝光, 田建华. 四扣洼陷沙四段灰岩地震识别与预测[J]. 油气地球物理, 2009, 7(2):34-38.

    Google Scholar

    [32] Zhu D R, Su C G, Tian J W. Seismic detection and prediction of the limestone in the Es4 of Sikou low-lying area[J]. Petroleum Geophysics, 2009, 7(2):34-38.

    Google Scholar

    [33] 夏伟. 邵家洼陷沙四段湖相白云岩成因及其储层发育规律研究[D]. 青岛:中国石油大学(华东), 2017.

    Google Scholar

    [34] Xia W. Study on genesis and reservoir distribution regulation of lacustrine dolomite in the fourth member of Shahejie(Es4)formation,Shaojia Sag[D]. Qingdao:China University of Petroleum (East China), 2017.

    Google Scholar

    [35] 高晓鹏. 沾车地区沙四上亚段湖相碳酸盐岩沉积特征研究[D]. 北京:中国地质大学(北京), 2012.

    Google Scholar

    [36] Gao X P. The sedimentologic characteristics of lacustrine carbonate rocks in the upper 4th member of Shahejie formation(E22S4U),Zhanhua and Chezhen area[D]. Beijing:China University of Geosciences(Beijing), 2012.

    Google Scholar

    [37] 曾海容, 宋惠珍. 碳酸盐岩储层裂缝预测系统研究及其应用[J]. 岩石力学与工程学报, 2000, 19(s1):1037-1041.

    Google Scholar

    [38] Zeng H R, Song H Z. A fracture prediction system for carbonate reservoir and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(s1):1037-1041.

    Google Scholar

    [39] 张汶. 南堡凹陷湖相碳酸盐岩优质储层识别及分布预测[J]. 断块油气田, 2018, 25(5):579-584.

    Google Scholar

    [40] Zhang W. Identification and distribution prediction of high-quality reservoir of lacustrine carbonate rocks in Nanpu Sag[J]. Fault-Block Oil & Gas Field, 2018, 25(5):579-584.

    Google Scholar

    [41] 李勤, 李庆春, 张林. VTI介质多波各向异性参数分析[J]. 石油地球物理勘探, 2014, 49(3):503-507.

    Google Scholar

    [42] Li Q, Li Q C, Zhang L. Parameter analysis of multi wave anisotropy in VTI media[J]. Oil Geophysical Prospecting, 2014, 49(3):503-507.

    Google Scholar

    [43] 王洪求, 杨午阳, 谢春辉, 等. 不同地震属性的方位各向异性分析及裂缝预测[J]. 石油地球物理勘探, 2014, 49(5):925-931.

    Google Scholar

    [44] Wang H Q, Yang W Y, Xie C H, et al. Azimuthal anisotropy analysis of different seismic attributes and fracture prediction[J]. Oil Geophysical Prospecting, 2014, 49(5):925-931.

    Google Scholar

    [45] 苏培东, 秦启荣, 黄润秋. 储层裂缝预测研究现状与展望[J]. 西南石油学院学报, 2005, 27(5):14-17.

    Google Scholar

    [46] Su P D, Qin Q R, Huang R Q. Prospects and status for the study on reservoir fractures[J]. Journal of Southwest Petroleum Institute, 2005, 27(5):14-17.

    Google Scholar

    [47] 詹仕凡, 陈茂山, 李磊, 等. OVT域宽方位叠前地震属性分析方法[J]. 石油地球物理勘探, 2015, 50(5):956-966.

    Google Scholar

    [48] Zhan S F, Chen M S, Li L, et al. OVT-domain wide-azimuth prestack seismic attribute analysis[J]. Oil Geophysical Prospecting, 2015, 50(5):956-966.

    Google Scholar

    [49] 罗小明, 王世瑞. 纵波VTI介质各向异性参数的求取[J]. 物探与化探, 2006, 30(3):233-235.

    Google Scholar

    [50] Luo X M, Wang S R. Estimation of anisotropy parameters in vtimedia using surface P wave data[J]. Geophysical and Geochemical Exploration, 2006, 30(3):233-235.

    Google Scholar

    [51] Ruger A. Reflection coefficients and azimuthal AVO analysis in anisotropic media[D]. Colorado:Colorado School of Mines, 1996.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(686) PDF downloads(98) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint