Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2013 Vol. 32, No. 2
Article Contents

Xing-liang HE, Chang-ling LIU, Jiang-tao WANG, Qing-guo MENG. Sample Pre-treatment Technologies for Gas Composition Analysis of Natural Gas Hydrates[J]. Rock and Mineral Analysis, 2013, 32(2): 284-289.
Citation: Xing-liang HE, Chang-ling LIU, Jiang-tao WANG, Qing-guo MENG. Sample Pre-treatment Technologies for Gas Composition Analysis of Natural Gas Hydrates[J]. Rock and Mineral Analysis, 2013, 32(2): 284-289.

Sample Pre-treatment Technologies for Gas Composition Analysis of Natural Gas Hydrates

  • Natural gas hydrate can only steadily exist at lower temperature and higher pressure, otherwise it will decompose into gas and water. Hereby, the pre-treatments (sample preservation, preparation, etc.) are very important to the accurate measurement of gas components of gas hydrate. Described in this paper are the pre-treatment technologies of gas hydrate that were studied experimentally, mainly including the optimal preservation temperature under atmospheric pressure, the optimal decomposition methods, the optimal ways of gas collecting and storing, and the removal methods of non-hydrate gases. The results indicate that the best temperature for gas hydrate storage is less than -100℃ under atmospheric pressure. The headspace method and syringe method can be widely used in hydrate-bound gases′ decomposition and collection, however, the drainage method was not suitable for hydrate samples containing CO2. It was more beneficial to place the sample at -80℃ to remove the non-hydrate gases absorbed on the surface of the specimen. In addition, the use of a glass bottle with butyl rubber plug for storage of hydrate decomposition gases instead of aluminum-plastic air bag is preferential, and the optimum time to finish the analysis of molecular compositions is within 5 days.
  • 加载中
  • [1] Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd Edition. Boca Raton: CRC Press, 2007.

    Google Scholar

    [2] 赵祖斌,杨木壮,沙志彬.天然气水合物气体成因及其来源[J].海洋地质动态, 2001, 17(7): 38-41.

    Google Scholar

    [3] 孟庆国.海洋天然气水合物模拟实验研究[D].青岛:青岛大学, 2009.

    Google Scholar

    [4] 张凌,宁伏龙,蒋国盛,吴翔,窦斌,涂运中.海洋水合物钻探取心与处理现状分析[J].探矿工程(岩土钻掘工程), 2009(Z1): 100-103. doi: 10.3969/j.issn.1672-7428.2009.z1.023

    CrossRef Google Scholar

    [5] 张凌,蒋国盛,宁伏龙,吴翔,窦斌,涂运中.国外天然气水合物岩心处理分析技术综述[J].地质科技情报, 2009,28(1): 123-126.

    Google Scholar

    [6] Gudmundsson J S, Parlaktuna M. Storage of Natural Gas Hydrate at Refrigerated Conditons [C]//Proceedings of AICHE Spring National Meeting,1992: 27-32.

    Google Scholar

    [7] Milkov A V. Molecular and stable isotope compositions of natural gas hydrates: A revised global dataset and basic interpretations in the context of geological settings [J]. Organic Geochemistry, 2005,36(5): 681-702. doi: 10.1016/j.orggeochem.2005.01.010

    CrossRef Google Scholar

    [8] Stern L A, Lorenson T D, Pinkston J C. Gas hydrate characterization and grain-scale imaging of recovered cores from the Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope [J]. Marine and Petroleum Geology, 2009, doi:10.1016/j.marpetgeo.

    CrossRef Google Scholar

    [9] Lorenson T D, Collett T S, Hunter R B.Gas geochemistry of the Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope[J]. Marine and Petroleum Geology, 2010. doi:10.1016/j.marpetgeo.2010.02.007 .

    CrossRef Google Scholar

    [10] Vaular E N, Barth T, Haflidason H. The geochemical characteristics of the hydrate-bound gases from the Nyegga pockmark field, Norwegian Sea[J]. Organic Geochemistry, 2010,41(5): 437-444.

    Google Scholar

    [11] Charlou J L, Fouquet Y, Donval J P, Auzende J M, Baptiste P J, Stievenard M, Michel S. Mineral and gas chemistry of hydrothermal fluids on an ultrafast spreading ridge: East Pacific Rise, 17° to 19° (Naudur cruise, 1993)—phase separation processes controlled by volcanic and tectonic activity [J].Journal of Geophysical Research, 1996, 101: 15899-15919. doi: 10.1029/96JB00880

    CrossRef Google Scholar

    [12] 贺行良,刘昌岭,孟庆国,祝有海,业渝光,夏宁.祁连山冻土区天然气水合物气体组分的气相色谱法测定[J].地质通报,2011, 30(12): 7-12.

    Google Scholar

    [13] 卢振权,祝有海,张永勤,文怀军,李永红,贾志耀,王平康,李清海.青海祁连山冻土区天然气水合物的气体成因研究[J].现代地质,2010,24(3): 581-588.

    Google Scholar

    [14] Pape T, Bahr A, Rethemeyer J, Kessler J D, Sahling H, Hinrichs K U, Klapp S A, Reeburgh W S, Bohrmann G. Molecular and isotopic partitioning of low-molecular-weight hydrocarbons during migration and gas hydrate precipitation in deposits of a high-flux seepage site [J]. Chemical Geology, 2010,269(3-4): 350-363. doi: 10.1016/j.chemgeo.2009.10.009

    CrossRef Google Scholar

    [15] Milkov A V, Claypool G E, Lee Y J, Bohrmann G, Borowski W S, Tomaru H. Gas hydrate systems at Hydrate Ridge Offshore Oregon inferred from molecular and isotopic properties of hydrate-bound and void gases[J].Geochimica et Cosmochimica Acta,2005,69(4): 1007-1026. doi: 10.1016/j.gca.2004.08.021

    CrossRef Google Scholar

    [16] 业渝光,刘昌岭,贺行良,孟庆国,孙始财.水合物相平衡原位监测实验装置[P].中国:ZL 2011-2-0099338.9 [2011-01-07].

    Google Scholar

    [17] 孟庆国,刘昌岭,业渝光,陈强.不同体系中甲烷水合物储气特性实验研究[J].世界科技研究与发展,2011, 33(1): 25-28.

    Google Scholar

    [18] 贺行良,夏宁,刘昌岭,王江涛,孟庆国.FID/TCD并联气相色谱法测定天然气水合物的气体组成[J].分析测试学报,2012,31(2): 206-210.

    Google Scholar

    [19] 刘光启,马连湘,刘杰.化学化工物性数据手册(有机卷、无机卷)[M].北京:化学工业出版社,2002.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(3)

Article Metrics

Article views(492) PDF downloads(1) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint