Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2013 Vol. 32, No. 2
Article Contents

Ya-nan CHENG, Xiang-yu GUAN, Wen-long QU, Hong-han CHEN, Fei LIU, Yu-xuan XIE, Ling-ling ZHU. Microbial Ecological Diversity Characteristics of the Soil Profile in the Vadose Zone Polluted by Ammonia Nitrogen[J]. Rock and Mineral Analysis, 2013, 32(2): 290-299.
Citation: Ya-nan CHENG, Xiang-yu GUAN, Wen-long QU, Hong-han CHEN, Fei LIU, Yu-xuan XIE, Ling-ling ZHU. Microbial Ecological Diversity Characteristics of the Soil Profile in the Vadose Zone Polluted by Ammonia Nitrogen[J]. Rock and Mineral Analysis, 2013, 32(2): 290-299.

Microbial Ecological Diversity Characteristics of the Soil Profile in the Vadose Zone Polluted by Ammonia Nitrogen

More Information
  • Scholars at home and abroad in recent years have focused on researching ammonia nitrogen pollution migration rules in the vadose zone soil. Column simulation and software simulation were primarily conducted for the study of ammonia nitrogen pollution migration. Biotechnology was widely used in degradation of pollutant in soil, but less applied to the study of pollution migration. This study applied Denaturing Gradient Gel Electrophoresis (DGGE) and the sequence analysis of the V3 Region of 16S rRNA combined with canonical correspondence analysis to characterize the bacteria vertical distribution characteristics and bacterial community structure in the soil from three typical contaminated zones in the North China Plain. According to the analysis of physical and chemical soil properties in polluted areas, there were some dominant individual bacteria in the key pathways of the nitrogen cycle and sulfate metabolism. It is suggested that the bacterial communities are affected by the distributions of ammonia, nitrate and nitrite nitrogen, showing that the community structure information of the dominant population in contaminated soil is an important parameter to study the ammonia nitrogen pollution migration rules.
  • 加载中
  • [1] William J H. Vadose zone microbial biobarriers remove nitrate from percolating groundwater [J]. Current Microbiology, 2009(58): 622-627.

    Google Scholar

    [2] Mamie N I, Kate M S, Dennis E R. Reduction of perchlorate and nitrate by microbial communities in vadose soil [J]. Applied and Environmental Micro-biology, 2005, 71(7): 3928-3934. doi: 10.1128/AEM.71.7.3928-3934.2005

    CrossRef Google Scholar

    [3] 卞华松,张仲燕.冷冻固定化优势菌群处理含甲醛苯酚废水[J].环境科学,1998,19(2): 39-42.

    Google Scholar

    [4] 赵娟,吕剑,何义亮,靳强,张文英,何霞.异养脱氮菌株Bacillus sp. LY 降解有毒有机污染物的研究[J].环境科学,2007,28(12): 2838-2842. doi: 10.3321/j.issn:0250-3301.2007.12.030

    CrossRef Google Scholar

    [5] 袁勇军,陆兆新,黄丽金,吕凤霞,别小妹.烟碱降解细菌的分离鉴定及其降解性能的初步研究[J].微生物学报,2005,45(2): 181-184.

    Google Scholar

    [6] 洪青,张忠辉,张晓舟,徐剑宏,李顺鹏.中度嗜盐菌Halomonas sp. BYS2 1启动子的克隆和测序[J].应用与环境生物学报,2005,11(6): 729-732.

    Google Scholar

    [7] Myers R M, Fischer S G, Maniatis T. Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis [J]. Nucleic Acids Research, 1985, 13: 3111-3129. doi: 10.1093/nar/13.9.3111

    CrossRef Google Scholar

    [8] Muyzer G, Brinkhoff T, Nübel U. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology [J]. Molecular Microbial Ecology Manual,1998,3(44): 1-27.

    Google Scholar

    [9] Zweifel U L, Hagstrom A. Total counts of marine bacteria include a large fraction of non- nucleoid-containing bacteria (ghosts) [J].Applied and Environ-mental Microbiology, 1995, 61(6): 2180-2185.

    Google Scholar

    [10] Schallenberg M, Kalff J, Rasmussen J B. Solutions to problems in enumerating sediment bacteria by direct count[J].Applied and Environmental Microbiology, 1989, 55(5): 1214-1219.

    Google Scholar

    [11] Zhou J Z, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition [J]. Applied and Environ-mental Microbiology, 1996, 62(2): 316-322.

    Google Scholar

    [12] Muyzer G, Dewaal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology, 1993(59): 695-700.

    Google Scholar

    [13] Rohlf F J. NTSYS-PC: Numerical Taxonomy and Multivariate Analysis System, Version 2.0 [M].New York: State University of New York, 2000: 97.

    Google Scholar

    [14] Thompson J D, Higgins D G, Gibson T J, Clustal W. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Research, 1994(22): 4673-4680.

    Google Scholar

    [15] Kumar S, Tamura K, Nei M. MEGA 3: Integrated software for molecular evolutionary genetics analysis and sequence alignment [J]. Briefings in Bioinformatics, 2004(5): 150-163.

    Google Scholar

    [16] Schloss P D, Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness [J]. Applied and Environmental Microbiology, 2005(71): 1501-1506.

    Google Scholar

    [17] Selim S, Negrel J, Govaerts C, Gianinazzi S, van Tuinen D.Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. Strain B2 isolated from the Sorghum Mycorrhizosphere[J]. Applied and Environmental Microbiology, 2005(71): 6501-6507.

    Google Scholar

    [18] Lin Y, Kong H N, He Y L. Simultaneous nitrification and denitrification in a membrane bioreactor and isolation of heterotrophic nitrifying bacteria [J]. Japanese Journal of Water Treatment Biology, 2004, 40(3): 105-114. doi: 10.2521/jswtb.40.105

    CrossRef Google Scholar

    [19] Derek R L, Elizabeth J P P. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria [J]. Applied and Environ-mental Microbiology, 1994(60): 2394-2399.

    Google Scholar

    [20] Robertson L A, Kuenen J G. Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, faculta-tively autotrophic sulphur bacterium [J]. General Microbiology, 1983, 129(9): 2847-2855.

    Google Scholar

    [21] Gupta A B. Thiosphaera pantotropha: A sulphur bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification[J]. Enzyme & Microbial Technology, 1997(21): 589-595.

    Google Scholar

    [22] Moir J W B, Wehrfritz J M, Spiro S. The biochemical characterization of a novel non-haem-iron hydroxylamine oxidase from Paracoccus denitrificans GB17 [J]. Biochemical Journal, 1996, 319(3): 823-827. doi: 10.1042/bj3190823

    CrossRef Google Scholar

    [23] Stephen P, Cummings D, Gilmour J. The effect of NaCl on the growth of a halomonas species: Accumulation and utilization of compatible solutes [J]. Microbiology, 1995(141): 1413-1418.

    Google Scholar

    [24] Kim H, Bram V, Lieven W, Willy V, Nico B, Paul D V.Cultivation of denitrifying bacteria: Optimization of isolation conditions and diversity study [J]. Applied and Environmental Microbiology, 2006(72): 2637-2643.

    Google Scholar

    [25] Stefan J G, Om P, Thomas M G. Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination [J]. Applied and Environ-mental Microbiology, 2010(76): 3244-3254.

    Google Scholar

    [26] Christiane W, Andrea T, Antje W. Horizon-specific bacterial community composition of german grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes [J]. Applied and Environmental Microbiology, 2010(76): 6751-6759.

    Google Scholar

    [27] Nicole D, Bruno G, Steffen K. Methanotrophic communities in Brazilian Ferralsols from naturally forested, afforested, and agricultural sites[J]. Applied and Environmental Microbiology, 2010(76): 1307-1310.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(3)

Article Metrics

Article views(444) PDF downloads(2) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint