Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2018 Vol. 37, No. 2
Article Contents

Yun-jun JIANG, Xing LI, Hai-lun JIANG, Ning ZHANG, Xue HAN, Yong-xiao ZHU. Determination of Sulfur in Soil by Inductively Coupled Plasma-Optical Emission Spectrometry with Four Acids Open Dissolution[J]. Rock and Mineral Analysis, 2018, 37(2): 152-158. doi: 10.15898/j.cnki.11-2131/td.201704010048
Citation: Yun-jun JIANG, Xing LI, Hai-lun JIANG, Ning ZHANG, Xue HAN, Yong-xiao ZHU. Determination of Sulfur in Soil by Inductively Coupled Plasma-Optical Emission Spectrometry with Four Acids Open Dissolution[J]. Rock and Mineral Analysis, 2018, 37(2): 152-158. doi: 10.15898/j.cnki.11-2131/td.201704010048

Determination of Sulfur in Soil by Inductively Coupled Plasma-Optical Emission Spectrometry with Four Acids Open Dissolution

  • At present, sulfur in soil is mainly determined by X-ray Fluorescence Spectrometry and tube furnace combustion iodine methods. The analysis speed of these two methods is slow, and the analysis accuracy is poor for both high and low content samples, difficult to meet the requirements of accurate and rapid determination of many samples. In order to improve the speed and accuracy of analysis, a new method for the determination of sulfur in soil samples by Inductively Coupled Plasma-Optical Emission Spectrometry combined with four acids digestion was developed. In this paper the digestion effect of aqua regia, aqua hot water bath and HCl-HNO3-HF-HClO4 is compared. The four acids digestion method was proven to better dissolve sulfur in soil samples. The method is simple, rapid and accurate with a low detection limit of 10 μg/g, analysis range between 33.3 μg/g and 50000 μg/g, and relative standard deviation between 0.47% and 4.05%. Many elements such as potassium, sodium, calcium, magnesium, iron, manganese, beryllium, lithium, lanthanum, cerium, scandium, vanadium, cobalt, nickel, and titanium can be determined simultaneously in a solution without increasing analysis cost. The method, which has been verified with actual samples, is suitable for application in the geological industry.
  • 加载中
  • [1] 孙建中, 戴昭华, 盛学斌.华北地区土壤中硫的赋存特征[J].环境科学学报, 1997, 17(2):187-192.

    Google Scholar

    Sun J Z, Dai Z H, Sheng X B.Occurrence of sulfur in soil in Northern China[J].Acta Scientiae Circumstantiae, 1997, 17(2):187-192.

    Google Scholar

    [2] 刘潇潇, 王钧, 曾辉.中国温带草地土壤硫的分布特征及其与环境因子的关系[J].生态学报, 2016, 36(24):7919-7928.

    Google Scholar

    Liu X X, Wang J, Zeng H.Spatial variation in surface soil sulfur in the temperate grasslands of China and environmental constraints[J].Acta Ecologica Sinica, 2016, 36(24):7919-7928.

    Google Scholar

    [3] 黎卫亮, 王鹏.直接燃烧-红外吸收光谱法测定土壤、水系沉积物中的碳和硫[J].理化检验(化学分册), 2013, 49(10):1268-1269.

    Google Scholar

    Li W L, Wang P.Determination of carbon and sulfur in soil and stream sediments by direct combustion infrared absorption spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2013, 49(10):1268-1269.

    Google Scholar

    [4] 施善林, 李东麟, 李晓晗.高频燃烧红外吸收法测定镍铁合金中硫含量[J].有色矿冶, 2015, 31(3):52-54.

    Google Scholar

    Shi S L, Li D L, Li X H.Determination of sulfur in ferro-nickel alloy by high frequency-infrared absorption method[J].Non-ferrous Mining and Metallurgy, 2015, 31(3):52-54.

    Google Scholar

    [5] 王世芳, 韩平, 王纪华, 等.X射线荧光光谱分析法在土壤重金属检测中的应用研究进展[J].食品安全质量检测学报, 2016, 7(11):4394-4400.

    Google Scholar

    Wang S F, Han P, Wang J H, et al.Application of X-ray fluorescence spectrometry on the detection of heavy metals in soil[J].Journal of Food Safety and Quality, 2016, 7(11):4394-4400.

    Google Scholar

    [6] Sanina N B, Aisueva T S, Chuparina E V, et al. Toxic and radioactive elements in soils and vegetation of natural and technogenic geosystems of Pribaikalye (Lake Baikal region)[J].Chinese Journal of Geochemistry, 2006, 25(6):245.

    Google Scholar

    [7] Doyle A, Saavedra A, Tristao M, et al.Determination of S, Ca, Fe, Ni and V in crude oil by energy dispersive X-ray fluorescence spectrometry using direct sampling on paper substrate[J].Fuel, 2015, 162:39-46. doi: 10.1016/j.fuel.2015.08.072

    CrossRef Google Scholar

    [8] 沈亚婷, 李迎春, 孙梦荷, 等.波长与能量色散复合式X射线荧光光谱仪特性研究及矿区土壤分析[J].光谱学与光谱分析, 2017, 37(7):2216-2224.

    Google Scholar

    Shen Y T, Li Y C, Sun M H, et al.Studies on characteristics on a combined wavelength and energy dispersion X-ray fluorescence spectrometer and determinations of major, minor and trace elements in soils around a mining area[J].Spectroscopy and Spectral Analysis, 2017, 37(7):2216-2224.

    Google Scholar

    [9] 张莉娟, 刘义博, 李小莉, 等.超细粉末压片法-X射线荧光光谱测定水系沉积物和土壤中的主量元素[J].岩矿测试, 2014, 33(4):517-522.

    Google Scholar

    Zhang L J, Liu Y B, Li X L, et al.Determination of major elements in stream sediments and soils by X-ray fluorescence spectrometry using pressed-superfine powder pellets[J].Rock and Mineral Analysis, 2014, 33(4):517-522.

    Google Scholar

    [10] 黄元.XRF-ICP-AES法测定土壤中的主次元素[J].化学分析计量, 2015, 24(6):73-76.

    Google Scholar

    Huang Y.Determination of major and minor elements in soil by X-ray fluorescence spectrometry and inductively coupled plasma-atomic emission spectrometry[J].Chemical Analysis and Meterage, 2015, 24(6):73-76.

    Google Scholar

    [11] 马光强, 谢辉.硫酸钡重量法测定冰铜中总硫[J].冶金分析, 2014, 34(3):73-76.

    Google Scholar

    Ma G Q, Xie H.Determination of total sulfur in copper matte barium sulfate gravimetry[J].Metallurgical Analysis, 2014, 34(3):73-76.

    Google Scholar

    [12] 刘晓峰, 李子尚, 张志勇, 等.半熔分解硫酸钡重量法测定各类含重晶石矿样中的硫[J].矿冶工程, 2015, 35(1):101-102.

    Google Scholar

    Liu X F, Li Z S, Zhang Z Y, et al.Determining sulfur in various ore samples containing barite by semi-molten decomposition barium sulfate gravimetric method[J].Mining and Metallurgical Engineering, 2015, 35(1):101-102.

    Google Scholar

    [13] Busman L M, Dick R P, Tabatabai M A.Determination of total sulfur and chlorine in plant materials by ion chromatography[J].Soil Science Society of America Journal, 1983, 47:1167-1170. doi: 10.2136/sssaj1983.03615995004700060022x

    CrossRef Google Scholar

    [14] Poznic M, Gabrovsek R, Novic M.Ion chromatography determination of chloride and sulphate in cement[J].Cement and Concrete Research, 1999, 29:441-443. doi: 10.1016/S0008-8846(98)00234-8

    CrossRef Google Scholar

    [15] 陈梅芹, 杨成方, 吴景雄, 等.矿区河流沉积物中硫的总量测定及过程控制[J].冶金分析, 2015, 35(5):20-24.

    Google Scholar

    Chen M Q, Yang C F, Wu J X, et al.Determination of total sulfur in river sediments from mining area and the process control[J].Metallurgical Analysis, 2015, 35(5):20-24.

    Google Scholar

    [16] 陈静, 高志军, 陈冲科, 等.X射线荧光光谱法分析地质样品的应用技巧[J].岩矿测试, 2015, 34(1):91-98.

    Google Scholar

    Chen J, Gao Z J, Chen C K, et al.Application skills on determination of geological sample by X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2015, 34(1):91-98.

    Google Scholar

    [17] 叶家瑜, 江宝林.区域地球化学勘查样品分析方法[M].北京:地质出版社, 2004.

    Google Scholar

    Ye J Y, Jiang B L.Methods for Analysis of Regional Geochemical Exploration Samples[M].Beijing:Geological Publishing House, 2004.

    Google Scholar

    [18] 苏凌云.低温逆王水溶样-电感耦合等离子体原子发射光谱法测定铁矿石中硫和磷[J].冶金分析, 2014, 34(11):69-72.

    Google Scholar

    Su L Y.Determination of sulfur and phosphorus in iron ore by inductively coupled plasma atomic emission spectrometry after sample dissolution with inverse aqua reqia in low temperature[J].Metallurgical Analysis, 2014, 34(11):69-72.

    Google Scholar

    [19] 李清昌, 薛静.ICP-AES测定矿物中硫的前处理方法的对比[J].有色矿冶, 2013, 29(1):57-58.

    Google Scholar

    Li Q C, Xue J.Comparison of pretreatment methods for determination of sulfur in minerals by ICP-AES[J].Non-Ferrous Mining and Metallurgy, 2013, 29(1):57-58.

    Google Scholar

    [20] 张文丽, 龙萍, 吴鉴, 等.ICP-AES法测定磷矿浆烟气脱硫剂固液相中硫含量的研究[J].光谱学与光谱分析, 2017, 37(5):1535-1539.

    Google Scholar

    Zhang W L, Long P, Wu J, et al.Determination of sulfur in solid and solution of phosphate ore pulp flue gas desulfurization agent with ICP-AES[J].Spectroscopy and Spectral Analysis, 2017, 37(5):1535-1539.

    Google Scholar

    [21] 聂西度, 谢华林.柴油中微量硫的发射光谱研究[J].光谱学与光谱分析, 2016, 36(5):1464-1467.

    Google Scholar

    Nie X D, Xie H L.Study on the detection of trace sulphur in diesel with inductively coupled plasma optical emission spectroscopy[J].Spectroscopy and Spectral Analysis, 2016, 36(5):1464-1467.

    Google Scholar

    [22] 李清彩, 赵庆令, 荀红梅.电感耦合等离子体原子发射光谱法测定多金属矿石中砷镉铟硫锑[J].冶金分析, 2015, 35(2):61-64.

    Google Scholar

    Li Q C, Zhao Q L, Xun H M.Determination of arsenic, cadmium, indium, sufer and antimony in polymetallic ore by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2015, 35(2):61-64.

    Google Scholar

    [23] 高小山, 倪文山, 姚明星, 等.电感耦合等离子体原子发射光谱法测定黑钨精矿中痕量硫磷[J].冶金分析, 2012, 32(6):30-33.

    Google Scholar

    Gao X S, Ni W S, Yao M X, et al.Determination of trace sulfur and phosphorus in wolframite concentrate by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2012, 32(6):30-33.

    Google Scholar

    [24] 张穗忠, 李杰.电感耦合等离子体原子发射光谱法测量萤石中硫含量[J].武汉工程职业技术学院学报, 2013, 25(4):1-3.

    Google Scholar

    Zhang S Z, Li J.Measuring of sulfur content in fluorite by inductively coupled plasma atomic emission spectrometry[J].Journal of Wuhan Engineering Institute, 2013, 25(4):1-3.

    Google Scholar

    [25] 胡璇, 石磊, 张炜华.碱熔融-电感耦合等离子体发射光谱法测定高硫铝土矿中的硫[J].岩矿测试, 2017, 36(2):124-129.

    Google Scholar

    Hu X, Shi L, Zhang W H.Determination of sulfur in high-sulfur bauxite by alkali fusion-inductively coupled plasma-optical emission spectrometry[J].Rock and Mineral Analysis, 2017, 36(2):124-129.

    Google Scholar

    [26] 马生凤, 温宏利, 马新荣, 等.四酸溶样-电感耦合等离子体原子发射光谱法测定铁、铜、锌、铅等硫化物矿石中22个元素[J].矿物岩石地球化学通报, 2011, 30(1):65-72.

    Google Scholar

    Ma S F, Wen H L, Ma X R, et al.Determination of 22 elements in iron, copper, zinc, and lead sulphide ores by ICP-AES with four acids digestion[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1):65-72.

    Google Scholar

    [27] 年季强, 顾锋, 朱春要, 等.微波消解-电感耦合等离子体原子发射光谱法测定萤石中硅铁镁钾钠磷硫[J].冶金分析, 2015, 35(4):39-43.

    Google Scholar

    Nian J Q, Gu F, Zhu C Y, et al.Determination of silicon, ferric, magnesium, potassium, sodium, phosphorus and sulphur in fluorite by microwave digestion-inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2015, 35(4):39-43.

    Google Scholar

    [28] Cruz S M, Tirk P, Nora F M, et al.Feasibility of sulfur determination in diesel oil by inductively coupled plasma optical emission spectrometry after micro wave induced combustion using flame retardant[J].Fuel, 2015, 160:108-113. doi: 10.1016/j.fuel.2015.07.069

    CrossRef Google Scholar

    [29] 刘峰, 秦樊鑫, 胡继伟, 等.不同混合酸消解样品对电感耦合等离子体原子发射光谱法测定土壤中重金属含量的影响[J].理化检验(化学分册), 2011, 47(8):951-954.

    Google Scholar

    Liu F, Qin F X, Hu J W, et al.Effects of different acid mixtures for sample digestion on the ICP-AES determination of heavy metal elements in soil[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2011, 47(8):951-954.

    Google Scholar

    [30] 郭春. 真空紫外光学薄膜制备及其性能检测技术研究[D]. 成都: 中国科学院光电技术研究所, 2014.

    Google Scholar

    Guo C. Study on Preparation and Characterization of Optical Coatings for Vacuum Ultraviolet Applications[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2014.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(5)

Article Metrics

Article views(4941) PDF downloads(149) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint