Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2018 Vol. 37, No. 2
Article Contents

Zhu WANG, Bei SHAO, Cheng LIU, Yuan-qiang FENG, Gao-ling LIU, Guo-dong WU, Ming-li LI. Determination of 8 Metallogenic Elements in Tibetan Skarn-type Copper-polymetallic Rich Ore from Tibet by Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2018, 37(2): 146-151. doi: 10.15898/j.cnki.11-2131/td.201712010188
Citation: Zhu WANG, Bei SHAO, Cheng LIU, Yuan-qiang FENG, Gao-ling LIU, Guo-dong WU, Ming-li LI. Determination of 8 Metallogenic Elements in Tibetan Skarn-type Copper-polymetallic Rich Ore from Tibet by Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2018, 37(2): 146-151. doi: 10.15898/j.cnki.11-2131/td.201712010188

Determination of 8 Metallogenic Elements in Tibetan Skarn-type Copper-polymetallic Rich Ore from Tibet by Inductively Coupled Plasma-Optical Emission Spectrometry

More Information
  • Skarn-type copper-polymetallic rich ore is a unique mineral resource in Tibet and is characterized by numerous diverse elements with high content. The mineral type is mainly sulfide, while the metallogenic ore elements are typically Cu, Pb, Zn, Fe, Ag, Bi, Cd and Co. The use of wet methods to analyze the samples will result in low measurement results due to the high content of silver, lead and other elements, which are difficult to dissolve and precipitate. The analytical results of these samples tend to be on the low side, due to the insoluble and easy-to-precipitate state during the wet pre-treatment caused by the relatively high amount of certain elements. In this study, hydrochloric acid was introduced to pre-desulfurize the ore, followed by dissolution with a mixed acid of nitric, hydrofluoric, and perchloric acid. As a result, the samples can be decomposed completely with effective desulphurization. When the dilution factor was optimized to 1000 and 10% hydrochloric acid was chosen as the solution medium, the sample solution did not precipitate and the multi-element analysis by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) yielded good accuracy and precision. The method measurement ranges are 0.0056% to 20.0% for Cu, 0.0087% to 20.0% for Pb, 0.0031% to 20.0% for Zn, 0.0090% to 20.0% for Fe, 5.40 μg/g to 3000 μg/g for Ag, 10.8 μg/g to 5000 μg/g for Bi, 0.69 μg/g to 5000 μg/g for Cd, 2.09 μg/g to 5000 μg/g for Co, respectively. The method accuracy was less than 5.40% and the precision (RSD, n=11) was less than 4.41%, which was verified by the national standard reference materials. This method has distinct advantages of simple preliminary treatment, efficient analysis, simultaneous detection of multiple elements, and a wide linear range. The results are in agreement with other methods according to actual sample test analysis.
  • 加载中
  • [1] 唐菊兴, 多吉, 刘鸿飞, 等.冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究[J].地球学报, 2012, 33(4):393-410.

    Google Scholar

    Tang J X, Duo J, Liu H F, et al.Minerogenetic series of ore deposits in the east part of the Gangdise metallogenic belt[J]. Acta Geoscientica Sinica, 2012, 33(4):393-410.

    Google Scholar

    [2] Zuo R G.Identifying geochemical anomalies associated with Cu and Pb-Zn skarn mineralization using principal component analysis and spectrum-area fractal modeling in the Gangdese Belt, Tibet (China)[J].Journal of Geochemical Exploration, 2011, 11(1-2):13-22.

    Google Scholar

    [3] 李光明, 刘波, 屈文俊, 等.西藏冈底斯成矿带的斑岩-矽卡岩成矿系统——来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据[J].大地构造与成矿学, 2005, 29(4):482-490.

    Google Scholar

    Li G M, Liu B, Qu W J, et al.The porphyry-skarn ore-forming system in Gangdese metallogenic belt, Southern Xizang:Evidence from molybdenite Re-Os age of porphyry-type copper deposits and skarn-type copper polymetallic deposits[J].Geotectonica et Metallogenia, 2005, 29(4):482-490.

    Google Scholar

    [4] 徐进力, 邢夏, 张勤, 等.电感耦合等离子体发射光谱法直接测定铜矿石中银铜铅锌[J].岩矿测试, 2010, 29(4):377-382.

    Google Scholar

    Xu J L, Xing X, Zhang Q, et al.Direct determination of silver, copper, lead and zinc in copper ores by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2010, 29(4):377-382.

    Google Scholar

    [5] 王小强, 侯晓磊, 杨惠玲.电感耦合等离子体发射光谱法同时测定铅锌矿中银铜铅锌[J].岩矿测试, 2011, 30(5):576-579.

    Google Scholar

    Wang X Q, Hou X L, Yang H L.Simultaneous quantification of silver, copper, lead and zinc in lead-zinc ores by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2011, 30(5):576-579.

    Google Scholar

    [6] 熊英, 王晓雁, 胡建平.电感耦合等离子体发射光谱法同时测定铜铅锌矿石中铜铅锌钴镍等元素方法确认[J].岩矿测试, 2011, 30(3):209-304.

    Google Scholar

    Xiong Y, Wang X Y, Hu J P.Affirmation of the method that simultaneous determination of copper, lead, zinc, cobalt and nickel in copper, lead and zinc ores by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2011, 30(3):209-304.

    Google Scholar

    [7] 王蕾, 温宏利, 马新荣, 等.电感耦合等离子体发射光谱法测定硫化物矿中的高含量铅[J].岩矿测试, 2011, 30(3):305-309.

    Google Scholar

    Wang L, Wen H L, Ma X R, et al.Determination of high content of lead in sulfide ores by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2011, 30(3):305-309.

    Google Scholar

    [8] 宋晓红, 冯旭, 段伟亚, 等.电感耦合等离子体原子发射光谱法(ICP-AES)测定硫化物矿石中的14种常微量元素[J].中国无机分析化学, 2014, 4(2):36-38.

    Google Scholar

    Song X H, Feng X, Duan W Y, et al.Determination of 14 kinds of major and minor elements in sulfide ore by inductively coupled plasma atomic emission spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(2):36-38.

    Google Scholar

    [9] 马生凤, 温宏利, 马新荣, 等.四酸溶样-电感耦合等离子体原子发射光谱法测定铁、铜、锌、铅等硫化物矿石中22个元素[J].矿物岩石地球化学通报, 2011, 30(1):65-72.

    Google Scholar

    Ma S F, Wen H L, Ma X R, et al.Determination of 22 elements in iron, copper, zinc, and lead sulphide ores by ICP-AES with four acids digestion[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1):65-72.

    Google Scholar

    [10] 宋召霞, 高云, 张志刚.电感耦合等离子体原子发射光谱(ICP-AES)法测定硫化物矿石中的铜铅锌[J].中国无机分析化学, 2017, 7(1):35-38.

    Google Scholar

    Song Z X, Gao Y, Zhang Z G.Determination of copper, lead and zinc in sulphide ores by inductively coupled plasma atomic emission spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(1):35-38.

    Google Scholar

    [11] Balaram V, Anjaia K V, Reddy M R P.Comparative study on the trace and rare earth element analysis of an Indian polymetallic nodule reference sample by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry[J].Analyst, 1995, 120(5):1401-1406. doi: 10.1039/an9952001401

    CrossRef Google Scholar

    [12] 李清彩, 赵庆令, 荀红梅.电感耦合等离子体原子发射光谱法测定多金属矿石中砷镉铟硫锑[J].冶金分析, 2015, 35(2):61-64.

    Google Scholar

    Li Q C, Zhao Q L, Xun H M.Determination of arsenic, cadmium, indium, sulfur and antimony in polymetallic ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2015, 35(2):61-64.

    Google Scholar

    [13] 张世龙, 吴周丁, 刘小玲, 等.电感耦合等离子体原子发射光谱法测定多金属矿石中铁、铜、铅、锌、砷、锑、钼和镉的含量[J].理化检验(化学分册), 2015, 51(7):930-933.

    Google Scholar

    Zhang S L, Wu Z D, Liu X L, et al.ICP-AES determination of Fe, Cu, Pb, Zn, As, Sb, Mo and Cd in multi-metal ores[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2015, 51(7):930-933.

    Google Scholar

    [14] 付桂花, 杨旭, 邱宏喜.硫脲介质ICP-OES测定多金属矿石中的银铝铋钴铜铁锰镍铅锑钛锌[J].黄金, 2015, 36(6):73-77.

    Google Scholar

    Fu G H, Yang X, Qiu H X.Determination of Ag, Al, Bi, Cu, Co, Fe, Mn, Ni, Pb, Sb, Ti and Zn in poly-metallic ores by ICP-AES in thiourea medium[J].Gold, 2015, 36(6):73-77.

    Google Scholar

    [15] 刘高令, 姜贞贞, 吴文清, 等.盐酸介质下火焰原子吸收光谱法测定铅精粉中的高含量银[J].岩矿测试, 2016, 35(6):621-625.

    Google Scholar

    Liu G L, Jiang Z Z, Wu W Q, et al.Determination of high content silver in lead powder by flame atomic absorption spectrometry under hydrochloric acid medium[J].Rock and Mineral Analysis, 2016, 35(6):621-625.

    Google Scholar

    [16] 王俊桃, 毛云, 刘锦梅, 等.硫化矿物中无机盐及重金属离子溶出的影响因素探讨[J].安全与环境工程, 2007, 14(1):4-8.

    Google Scholar

    Wang J T, Mao Y, Liu J M, et al.Study on aquatic environmental influence of mining solid waste material in the metal sulfide deposit area[J].Safety and Environmental Engineering, 2007, 14(1):4-8.

    Google Scholar

    [17] Chao T T, Sanzolone R F, 李生郁.硫化矿物的化学溶解[J].国外地质勘探技术, 1981(9):28-32.

    Google Scholar

    Chao T T, Sanzolone R F, Li S Y.Chemical dissolution of sulfide minerals[J].Foreign Geoexploration Technology, 1981(9):28-32.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(5)

Article Metrics

Article views(3377) PDF downloads(82) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint