Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2017 Vol. 36, No. 4
Article Contents

Xiang-ping ZHA, Bing GONG, Yong-fei ZHENG. Precise Measurement of Carbon Concentration and Isotopic Ratios in Silicate Rocks by a High Sensitivity Elemental Analyzer Coupled with a Continuous Flow Isotope Mass Spectrometry[J]. Rock and Mineral Analysis, 2017, 36(4): 327-339. doi: 10.15898/j.cnki.11-2131/td.201611190174
Citation: Xiang-ping ZHA, Bing GONG, Yong-fei ZHENG. Precise Measurement of Carbon Concentration and Isotopic Ratios in Silicate Rocks by a High Sensitivity Elemental Analyzer Coupled with a Continuous Flow Isotope Mass Spectrometry[J]. Rock and Mineral Analysis, 2017, 36(4): 327-339. doi: 10.15898/j.cnki.11-2131/td.201611190174

Precise Measurement of Carbon Concentration and Isotopic Ratios in Silicate Rocks by a High Sensitivity Elemental Analyzer Coupled with a Continuous Flow Isotope Mass Spectrometry

  • The precise and accurate analyses of minor carbon in silicate rocks can provide valuable insights into the origin of fluid and formation processes. The Elemental Analyzer-Isotope Ratio Mass Spectrometry (EA-IRMS) is a quick analytical method using small quantities of sample. In this study, EA-IRMS is applied to analyze carbon isotopic composition of trace carbon in silicate rock. Based on a series of tests, the key analytical parameters are confirmed. The normalization procedure and reference materials selection are as follows. ① Selection of standard materials with a wide carbon isotope composition range and reasonable carbon isotope distribution. Preparation of the mixtures of reference materials and super quality quartz power. ② A calibration curve was established using the measured values and certified values of the three reference materials similar to the samples. The measurement of natural samples is normalized to achieve an accurate determination of trace carbon content as low as 600 μg/g in silicate rocks and carbon isotopic composition. National standard material GBW04416 is used as an unknown sample to test the linear equations regressed with different contents. When the carbon content is no lower than 600 μg/g, the standard deviations are 0.02‰, 0.04‰, 0.05‰, -0.07‰, 0.11‰, respectively. For the mixture of MERCK and USGS24, the determined carbon isotopic composition and carbon content are comparable with the true value within analytic uncertainty. Therefore, the high precision and accuracy of carbon isotopic composition can be obtained for carbon content no less than 600 μg/g in 30 mg silicate rock. The carbon content of the sample was established based on the linear curve established by the peak area (peak intensity) of the standard mixture of different carbon contents and the corresponding content. Analytic uncertainty of carbon content of the sample is within 10%.
  • 加载中
  • [1] 王建国, 陈代钊, 严德天.重大地质转折期的碳、硫循环和环境演变[J].地学前缘, 2009, 16(6):33-47.

    Google Scholar

    Wang J G, Chen D Z, Yan D T.Variation in carbon and sulphur isotopes and environments during the critical geological transitions[J].Earth Science Frontiers, 2009, 16(6):33-47.

    Google Scholar

    [2] Newton R, Bottrell S.Stable isotopes of carbon and sulphur as indicators of environmental change:Past and present[J].Geological Society of London, 2007, 164:691-708. doi: 10.1144/0016-76492006-101

    CrossRef Google Scholar

    [3] 郑永飞, 陈江峰.稳定同位素地球化学[M].北京:科学出版社, 2000:193.

    Google Scholar

    Zheng Y F, Chen J F.Stable Isotope Geochemistry[M].Beijing:Science Press, 2000:193.

    Google Scholar

    [4] Zheng Y F, Gong B, Li Y L, et al.Cabon concentrations and isotopic ratios of ecologites from the Dabie and Sulu terranes in China[J].Chemical Geology, 2000, 168:291-305. doi: 10.1016/S0009-2541(00)00199-6

    CrossRef Google Scholar

    [5] Hansen H J.Stable isotope of carbon from basaltic rocks and their possible relation to atmospheric isotope excursions[J].Lithos, 2006, 92:105-116. doi: 10.1016/j.lithos.2006.03.029

    CrossRef Google Scholar

    [6] Wierzbowski K.Effects of pre-treatments and organic matter on oxygen and carbon isotope analyses of skeletal and inorganic calcium carbonate[J].International Journal of Mass Spectrometry, 2007, 268:16-29. doi: 10.1016/j.ijms.2007.08.002

    CrossRef Google Scholar

    [7] 彭亚君, 王玉钰, 刘冬艳, 等.酸化过程对海洋沉积物中有机碳同位素分析的影响[J].海洋学报, 2015, 37(12):85-92.

    Google Scholar

    Peng Y J, Wang Y Y, Liu D Y, et al.Acid treatment effects on the carbon stable isotope values of marine sediments[J].Haiyang Xuebao, 2015, 37(12):85-92.

    Google Scholar

    [8] Könitzer S F, Leng M J, Davies S J, et al.An assessment of geochemical preparation methods prior to organic carbon concentration and carbon isotope ratio analyses of fine-grained sedimentary rocks[J]. Geochemistry Geophysics Geosystems, 2012, 13, Q0AI02, doi:10.1029/2012GC004094.

    CrossRef Google Scholar

    [9] Gehre M, Strauch G.High-temperature elemental analysis and pyrolysis techniques for stable isotope analysis[J].Rapid Communications in Mass Spectrometry, 2003, 17:1497-1503. doi: 10.1002/(ISSN)1097-0231

    CrossRef Google Scholar

    [10] Epstein S, Jr Taylor H P.The concentration and isotopic composition of hydrogen, carbon, and silicon in Apollo 11 lunar rocks and minerals[J].Apollo 11 Lunar Science Conference, 1970, 12:1085-1096.

    Google Scholar

    [11] Sakai H, Smith J W, Kaplan I R, et al.Micro-determinations of C, N, S, H, He, metallic Fe, δ13C, δ15N and δ34S in geologic samples[J].Geochemical Journal, 1976, 10:85-96. doi: 10.2343/geochemj.10.85

    CrossRef Google Scholar

    [12] Spötl C, Mattey D.Stable isotope microsampling of spe-leothems for palaeoenvironmental studies:A comparison of microdrill, micromill and laser ablation techniques[J].Chemical Geology, 2006, 235:48-58. doi: 10.1016/j.chemgeo.2006.06.003

    CrossRef Google Scholar

    [13] House C H, Schopf J W, Mckeegan K D.Carbon isotopic composition of individual Precambrian microfossils[J].Geology, 2000, 28(8):707-710. doi: 10.1130/0091-7613(2000)28<707:CICOIP>2.0.CO;2

    CrossRef Google Scholar

    [14] Zinner E.Isotopic Measurements with the Ion Microprobe[M]//Shanks Ⅲ W C, Criss R E (eds.).New Frontiers in Stable Isotopic Research:Laser Probe, Ion Probe, and Small-sample Analysis.U.S. Geological Survey Bulletin, 1986:145-162.

    Google Scholar

    [15] Valley J W, Graham C M, Harte B, et al.Ion Microprobe Analysis of Oxygen, Carbon and Hydrogen Isotope Ratios[M]//Applicants of Microanalytical Techniques to Understanding Mineralizing Processes. Mckibben M A, Shanks Ⅲ W C, Ridley W I (eds.).Society of Economic Geologist, 1998:73-98.

    Google Scholar

    [16] Floss C, Stadermann F J.Complementary carbon, nitrogen and oxygen isotopic imaging of interplanetary dust particle:Presolar grains and an indication of a carbon isotopic anomaly[J].Lunar and Planetary Science, 2003, XXXIV, Abstract#1238:2.

    Google Scholar

    [17] Floss C, Stadermann F J.Isotopically primitive interplanetary dust particles of cometary origin:Evidence from nitrogen isotopic compositions[J]. Lunar and Planetary Science, 2004, XXXV, Abstract#1281:2.

    Google Scholar

    [18] Preston T, Owens N J P.Interfacing an automatic elemental analyzer with an isotope ratio mass spectrometer:The potential for fully automated total nitrogen and nitrogen-15 analysis[J].Analyst, 1983, 108:971-977. doi: 10.1039/an9830800971

    CrossRef Google Scholar

    [19] Brenna J T, Corso T N, Tobias H J, et al.High-precision continuous-flow isotope ratio mass spectrometry[J].Mass Spectrometry Reviews, 1997, 16:227-258. doi: 10.1002/(ISSN)1098-2787

    CrossRef Google Scholar

    [20] Raghavan M, McCullagh J S O, Lynnerup N, et al.Amino acid δ13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry:Paleodietary implications fromintra-individual comparisons[J].Rapid Communications in Mass Spectrometry, 2010, 24:541-548. doi: 10.1002/rcm.v24:5

    CrossRef Google Scholar

    [21] Galimov E M, Sevastyanov V S, Kulbachevskaya E V, et al.Isotope ratio mass spectrometry:δ13C and δ15N analysis for tracing the origin of illicit drugs[J].Rapid Communications in Mass Spectrometry, 2005, 19:1213-1216. doi: 10.1002/(ISSN)1097-0231

    CrossRef Google Scholar

    [22] Croft D J, Pye K.The potential use of continuous-flow isotope-ratio mass spectrometry as a tool in forensic soil analysis:A preliminary report[J].Rapid Communications in Mass Spectrometry, 2003, 17:2581-2584. doi: 10.1002/(ISSN)1097-0231

    CrossRef Google Scholar

    [23] 郑永飞, 龚冰, 王峥荣, 等.岩石中碳同位素比值的EA-IRMS测定及其地球化学应用[J].地质论评, 1999, 45(5):529-538.

    Google Scholar

    Zheng Y F, Gong B, Wang Z R, et al.EA-IRMS online analysis of both carbon concentration and isotopic ratio of silicate rocks and its geological applications[J].Geological Review, 1999, 45(5):529-538.

    Google Scholar

    [24] Zheng Y F, Gong B, Zhao Z F, et al.Two types of gneisses associated with eclogite at Shuanghe in the Dabie terrane:Carbon isotope, zircon U-Pb dating and oxygen isotope[J].Lithos, 2003, 70:321-343. doi: 10.1016/S0024-4937(03)00104-X

    CrossRef Google Scholar

    [25] Zhao Z F, Zheng Y F, Wei C S, et al.Carbon concen-tration and isotope composition of Granites from Southeast China[J].Physics and Chemistry of the Earth (A), 2001, 29:821-833.

    Google Scholar

    [26] Cater J F, Barwick V J.Good Practice Guide for Isotope Ratio Mass Spectrometry[M].FIRMS(2011).ISBN 978-0-948926-31-0.

    Google Scholar

    [27] 王政, 刘卫国, 文启彬.土壤样品中的氮同位素组成的元素分析仪-同位素质谱分析方法[J].质谱学报, 2005, 26(2):71-75.

    Google Scholar

    Wang Z, Liu W G, Wen Q B.Measurement of nitrogen isotopic composition of soil samples by element analysis-isotope mass spectrometry[J].Journal of Chinese Mass Spectrometry Society, 2005, 26(2):71-75.

    Google Scholar

    [28] 崔杰华, 祁彪, 王颜红.植物样品中稳定碳同位素的EA-IRMS系统分析方法[J].质谱学报, 2008, 29(1):24-29.

    Google Scholar

    Cui J H, Qi B, Wang Y H.Measurement of stable carbon isotopic composition of plant samples by EA-IRMS system[J].Journal of Chinese Mass Spectrometry Society, 2008, 29(1):24-29.

    Google Scholar

    [29] Grassineau N V.High-precision EA-IRMS analysis of S and C isotopes in geological materials[J].Applied Geochemisty, 2006, 21:756-765. doi: 10.1016/j.apgeochem.2006.02.015

    CrossRef Google Scholar

    [30] Craig H.Isotopic standards for carbon and oxygen and corrections factors for mass spectrometric analysis of carbon dioxide[J].Geochimica et Cosmochimica Acta, 1957, 12:133-149. doi: 10.1016/0016-7037(57)90024-8

    CrossRef Google Scholar

    [31] Werner R A, Brand W A.Referencing strategies and techniques in stable isotope ratio analysis[J].Rapid Communications in Mass Spectrometry, 2001, 15:501-519. doi: 10.1002/(ISSN)1097-0231

    CrossRef Google Scholar

    [32] 查向平, 龚冰, 郑永飞.低质量数元素同位素在线连续流同位素比值质谱分析的质量控制和数据标准化[J].岩矿测试, 2014, 33(4):453-467.

    Google Scholar

    Zha X P, Gong B, Zheng Y F.Data normalization and quality control of light element stable isotope analyses by means of continuous flow isotope ratio mass spectrometry[J].Rock and Mineral Analysis, 2014, 33(4):453-467.

    Google Scholar

    [33] Skrzypek G.Normalization procedures and reference materials selection in stable HCNOS isotope analyses:An overview[J].Analytical and Bioanalytical Chemistry, 2013, 405:2815-2823. doi: 10.1007/s00216-012-6517-2

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(4)

Article Metrics

Article views(3104) PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint