Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2013 Vol. 32, No. 1
Article Contents

Ling-hao ZHAO, Xiu-chun ZHAN, Ming-yue HU, Chen-zi FAN, Dong-yang SUN, Chuan-bao LIU. Laser Ablation-Inductively Coupled Plasma-Mass Spectrometric Analysis Methods of Melt Inclusions and Its Geological Applications[J]. Rock and Mineral Analysis, 2013, 32(1): 1-14.
Citation: Ling-hao ZHAO, Xiu-chun ZHAN, Ming-yue HU, Chen-zi FAN, Dong-yang SUN, Chuan-bao LIU. Laser Ablation-Inductively Coupled Plasma-Mass Spectrometric Analysis Methods of Melt Inclusions and Its Geological Applications[J]. Rock and Mineral Analysis, 2013, 32(1): 1-14.

Laser Ablation-Inductively Coupled Plasma-Mass Spectrometric Analysis Methods of Melt Inclusions and Its Geological Applications

More Information
  • Melt inclusions in phenocrysts play a very important role in petrological research for reserving the only direct information available on the temperature, pressure and chemical compositions of the magmatic system at the time that the host minerals crystallized. However, due to the limitation of techniques on sampling method, the resolution and sensitivity of the instrument, the study of melt inclusions (especially the chemical composition) is a relatively slow process. The melt inclusions properties and classifications generally are introduced in this paper, along with a summary of the analytical methods, applications and sample preparation, and an extensive description of the technique of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS), especially the elemental fraction, matrix effects and principal points for laser ablation. The development of an in-situ micro-analytical technique by LA-ICP-MS, which can analyse the multi-phase inclusions up to 100 μm beneath the surface of the complex minerals, and avoids the prerequisite conditions of heating homogenization and sample preparation for the routine method is described. With the advantages of rapidity, efficiency and accuracy, the newly developed technique allows more analysis for melt inclusions in the same sample and comprehensively provides evolvement information for magma. Data accuracy can be comparable with Electron Microprobe Analysis and Secondary Ion Mass Spectrometry. Recently, this technique has been applied widely in research fields of geology and ore deposit geology. Furthermore, the significant achievements were obtained in the deep earth magmatic processes and magmatic hydrothermal metallogenic theory. The development of the equipment and quantitative methods will improve the accuracy of this technique. Meanwhile, the development and application of in-situ isotopic analysis of melt inclusions by LA-MC-ICP-MS will revolutionize melt inclusions research.
  • 加载中
  • [1] 夏林圻.岩浆岩中的熔体包裹体 [J].地学前缘, 2002, 9(2): 403-414.

    Google Scholar

    [2] Danyushevsky L V, Della-Pasqua F N, Sokolov S. Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: Petrological implications[J]. Contributions to Mineralogy and Petrology, 2000, 138(1): 68-83. doi: 10.1007/PL00007664

    CrossRef Google Scholar

    [3] Danyushevsky L V, McNeill A W, Sobolev A V. Experi-mental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: An overview of techniques, advantages and complications [J]. Chemical Geology, 2002, 183(1-4): 5-24. doi: 10.1016/S0009-2541(01)00369-2

    CrossRef Google Scholar

    [4] Qin Z, Lu F, Anderson A T. Diffusive reequilibration of melt and fluid inclusions [J]. American Mineralogist, 1992, 77(5-6): 565-576.

    Google Scholar

    [5] Gaetani G A,Watson E B. Open system behavior of olivine-hosted melt inclusions [J]. Earth and Planetary Science Letters, 2000, 183(1-2): 27-41. doi: 10.1016/S0012-821X(00)00260-0

    CrossRef Google Scholar

    [6] Sobolev A V, Danyushevsky L V. Petrology and Geoch-emistry of Boninites from the North Termination of the Tonga Trench: Constraints on the generation conditions of primary high-Ca boninite magmas [J]. Journal of Petrology, 1994, 35(5): 1183-1211. doi: 10.1093/petrology/35.5.1183

    CrossRef Google Scholar

    [7] 卢焕章,范洪瑞,倪培,欧光习,沈昆,张文淮.流体包裹体[M].北京:科学出版社,2004.

    Google Scholar

    [8] Schiano P. Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals [J]. Earth-Science Reviews, 2003, 63(1-2): 121-144. doi: 10.1016/S0012-8252(03)00034-5

    CrossRef Google Scholar

    [9] Frezzotti M-L.Silicate-melt inclusions in magmatic rocks: Applications to petrology [J]. Lithos, 2001, 55(1-4): 273-299. doi: 10.1016/S0024-4937(00)00048-7

    CrossRef Google Scholar

    [10] Marshall D J. Cathodoluminescence of Geological Materials [M]. Boston: Unwin Hyman,1988: 146.

    Google Scholar

    [11] Lowenstern J B. Chlorine, fluid immiscibility, and de-gassing in peralkaline magmas from Pantelleria, Italy [J].American Mineralogist,1994, 79(3-4): 353-369.

    Google Scholar

    [12] Zhang Y, Belcher R, Ihinger P D, Wang L, Xu Z, Newman S. New calibration of infrared measurement of dissolved water in rhyolitic glasses [J]. Geochimica et Cosmochimica Acta, 1997, 61(15): 3089-3100. doi: 10.1016/S0016-7037(97)00151-8

    CrossRef Google Scholar

    [13] Burke E A J. Raman microspectrometry of fluid inclusions [J]. Lithos, 2001, 55(1-4): 139-158. doi: 10.1016/S0024-4937(00)00043-8

    CrossRef Google Scholar

    [14] 于福生,袁万明,韩松,靳克,黄宇营,何伟,董金泉,贾秀琴,曹杰,王红月.同步辐射X射线荧光微探针技术测定熔融包裹体中的微量元素[J].高能物理与核物理, 2004, 28(6): 675-678.

    Google Scholar

    [15] 周云,汪雄武,唐菊兴,秦志鹏,彭慧娟,李爱国,杨科,王华,李炯,张继超.西藏甲玛铜多金属矿含矿斑岩石英斑晶单个熔融包裹体的成分研究 [J].成都理工大学学报, 2011, 38(1): 92-102.

    Google Scholar

    [16] Harris A C, Kamenetsky V S, White N C, van Achter-bergh E, Ryan C G. Melt inclusions in veins: Linking magmas and porphyry Cu deposits [J]. Science, 2003, 302(5653): 2109-2111. doi: 10.1126/science.1089927

    CrossRef Google Scholar

    [17] Zajacz Z, Szabó C. Origin of sulfide inclusions in cumulate xenoliths from Nógrád-Gömör volcanic field, Pannonian Basin (North Hungary/South Slovakia) [J]. Chemical Geology, 2003, 194(1-3): 105-117. doi: 10.1016/S0009-2541(02)00273-5

    CrossRef Google Scholar

    [18] Pettke T, Halter W E, Webster J D, Aigner-Torres M, Heinrich C A. Accurate quantification of melt inclusion chemistry by LA-ICPMS: A comparison with EMP and SIMS and advantages and possible limitations of these methods [J]. Lithos, 2004, 78(4): 333-361. doi: 10.1016/j.lithos.2004.06.011

    CrossRef Google Scholar

    [19] Sobolev A V, Shimizu N. Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge [J]. Nature, 1993, 363(6425): 151-154. doi: 10.1038/363151a0

    CrossRef Google Scholar

    [20] Sobolev A V, Chaussidon M. H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: Implications for H2O storage and recycling in the mantle [J]. Earth and Planetary Science Letters, 1996, 137(1-4): 45-55. doi: 10.1016/0012-821X(95)00203-O

    CrossRef Google Scholar

    [21] Hauri E, Wang J, Dixon J E, King P L, Mandeville C, Newman S. SIMS analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and comparisons with FTIR [J]. Chemical Geology, 2002, 183(1-4): 99-114. doi: 10.1016/S0009-2541(01)00375-8

    CrossRef Google Scholar

    [22] Panina L I, Usoltseva L M. Alkaline-ultrabasic mantle-derived magmas, their sources, and crystallization features: Data of melt inclusion studies [J]. Lithos, 2008, 103(3-4): 431-444. doi: 10.1016/j.lithos.2007.10.009

    CrossRef Google Scholar

    [23] Taylor R P, Jackson S E, Longerich H P, Webster J D. In situ trace-element analysis of individual silicate melt inclusions by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) [J]. Geochimica et Cosmochimica Acta, 1997, 61(13): 2559-2567. doi: 10.1016/S0016-7037(97)00109-9

    CrossRef Google Scholar

    [24] Halter W E, Pettke T, Heinrich C A, Rothen-Rutishauser B. Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: Methods of quantification [J]. Chemical Geology, 2002, 183(1-4): 63-86. doi: 10.1016/S0009-2541(01)00372-2

    CrossRef Google Scholar

    [25] Zajacz Z, Halter W. LA-ICPMS analyses of silicate melt inclusions in co-precipitated minerals: Quantification, data analysis and mineral/melt partitioning [J]. Geochimica et Cosmochimica Acta, 2007, 71(4): 1021-1040. doi: 10.1016/j.gca.2006.11.001

    CrossRef Google Scholar

    [26] Halter W E, Pettke T, Heinrich C A. The Origin of Cu/Au ratios in porphyry-type ore deposits [J]. Science, 2002, 296(5574): 1844-1846. doi: 10.1126/science.1070139

    CrossRef Google Scholar

    [27] Hauri E. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions [J]. Chemical Geology, 2002, 183(1-4): 115-141. doi: 10.1016/S0009-2541(01)00374-6

    CrossRef Google Scholar

    [28] Guillong M, Pettke T. Depth dependent element ratios in fluid inclusion analysis by laser ablation ICP-MS [J]. Journal of Analytical Atomic Spectrometry, 2012, 27(3): 505-508. doi: 10.1039/c2ja10147e

    CrossRef Google Scholar

    [29] Halter W E, Heinrich C A, Pettke T. Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusions in an andesitic complex Ⅱ: Evidence for magma mixing and magma chamber evolution [J]. Contributions to Mineralogy and Petrology, 2004, 147(4): 397-412. doi: 10.1007/s00410-004-0563-5

    CrossRef Google Scholar

    [30] Zajacz Z, Halter W E, Pettke T, Guillong M. Deter-mination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: Controls on element partitioning [J]. Geochimica et Cosmochimica Acta, 2008, 72(8): 2169-2197. doi: 10.1016/j.gca.2008.01.034

    CrossRef Google Scholar

    [31] Heinrich C A, Pettke T, Halter W E, Aigner-Torres M, Audétat A, G nther D, Hattendorf B, Bleiner D, Guillong M, Horn I. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry [J]. Geochimica et Cosmochimica Acta, 2003, 67(18): 3473-3497. doi: 10.1016/S0016-7037(03)00084-X

    CrossRef Google Scholar

    [32] Liu Y, Hu Z, Yuan H, Hu S, Cheng H. Volume-optional and low-memory (VOLM) chamber for laser ablation-ICP-MS: Application to fiber analyses [J]. Journal of Analytical Atomic Spectrometry, 2007, 22(5): 582-585. doi: 10.1039/b701718a

    CrossRef Google Scholar

    [33] Eggins S M, Kinsley L P J, Shelley J M G. Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS [J]. Applied Surface Science, 1998, 127-129: 278-286. doi: 10.1016/S0169-4332(97)00643-0

    CrossRef Google Scholar

    [34] Russo R E, Mao X, Liu H, Gonzalez J, Mao S S. Laser ablation in analytical chemistry-A review [J]. Talanta, 2002, 57(3): 425-451. doi: 10.1016/S0039-9140(02)00053-X

    CrossRef Google Scholar

    [35] Jeffries T E, Pearce N J G, Perkins W T, Raith A. Chemical fractionation during infrared and ultraviolet laser ablation inductively coupled plasma mass spectrometry-implications for mineral microanalysis [J]. Analytical Communications, 1996, 33(1): 35-39. doi: 10.1039/AC9963300035

    CrossRef Google Scholar

    [36] 张春来,刘勇胜,高山,Zoltan Z,胡兆初,高长贵.四合屯玄武岩斑晶中单个熔体包裹体元素组成及其对岩浆演化的指示 [J].地球化学, 2011, 40(2): 109-125.

    Google Scholar

    [37] Hu Z, Liu Y, Chen L, Zhou L, Li M, Zong K, Zhu L, Gao S. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution [J]. Journal of Analytical Atomic Spectrometry, 2011,26(2): 425-430. doi: 10.1039/C0JA00145G

    CrossRef Google Scholar

    [38] Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C, Chen H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard [J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [39] 胡明月,何红蓼,詹秀春,樊兴涛,王广,贾泽荣.基体归一定量技术在激光烧蚀-等离子体质谱法锆石原位多元素分析中的应用 [J].分析化学, 2008,36(7): 947-953.

    Google Scholar

    [40] de Hoog J C M, Mason P R D, van Bergen M J. Sulfur and chalcophile elements in subduction zones: constraints from a laser ablation ICP-MS study of melt inclusions from Galunggung Volcano, Indonesia [J].Geochimica et Cosmochimica Acta, 2001, 65(18): 3147-3164. doi: 10.1016/S0016-7037(01)00634-2

    CrossRef Google Scholar

    [41] Pettke T, Audétat A, Schaltegger U, Heinrich C A. Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia): Part Ⅱ: Evolving zircon and thorite trace element chemistry [J]. Chemical Geology, 2005, 220(3-4): 191-213. doi: 10.1016/j.chemgeo.2005.02.017

    CrossRef Google Scholar

    [42] Elburg M A, Kamenetsky V S, Foden J D, Sobolev A. The origin of medium-K ankaramitic arc magmas from Lombok (Sunda Arc, Indonesia): Mineral and melt inclusion evidence [J]. Chemical Geology, 2007, 240(3-4): 260-279. doi: 10.1016/j.chemgeo.2007.02.015

    CrossRef Google Scholar

    [43] Guzmics T, Zajacz Z, Kodolányi J, Halter W, Szabó C. LA-ICP-MS study of apatite- and K feldspar-hosted primary carbonatite melt inclusions in clinopyroxenite xenoliths from lamprophyres, Hungary: Implications for significance of carbonatite melts in the Earth′s mantle [J]. Geochimica et Cosmochimica Acta, 2008, 72(7): 1864-1886. doi: 10.1016/j.gca.2008.01.024

    CrossRef Google Scholar

    [44] Araújo D P, Griffin W L, O′Reilly S Y. Mantle melts, metasomatism and diamond formation: Insights from melt inclusions in xenoliths from Diavik, Slave Craton [J]. Lithos, 2009, 112(Supplement 2): 675-682.

    Google Scholar

    [45] Daví M, De Rosa R, Barca D. A LA-ICP-MS study of minerals in the Rocche Rosse magmatic enclaves: Evidence of a mafic input triggering the latest silicic eruption of Lipari Island (Aeolian Arc, Italy) [J]. Journal of Volcanology and Geothermal Research, 2009, 182(1-2): 45-56. doi: 10.1016/j.jvolgeores.2009.02.001

    CrossRef Google Scholar

    [46] Zajacz Z, Hanley J J, Heinrich C A, Halter W E, Guillong M. Diffusive reequilibration of quartz-hosted silicate melt and fluid inclusions: Are all metal concentrations unmodified?[J]. Geochimica et Cosmochimica Acta, 2009, 73(10): 3013-3027. doi: 10.1016/j.gca.2009.02.023

    CrossRef Google Scholar

    [47] Marques A F A, Scott S D, Guillong M. Magmatic degassing of ore-metals at the Menez Gwen: Input from the Azores plume into an active Mid-Atlantic Ridge seafloor hydrothermal system [J]. Earth and Planetary Science Letters, 2011, 310(1-2): 145-160. doi: 10.1016/j.epsl.2011.07.021

    CrossRef Google Scholar

    [48] Audétat A, Pettke T. The magmatic-hydrothermal evol-ution of two barren granites: A melt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutons in northern New Mexico (USA) [J]. Geochimica et Cosmochimica Acta, 2003, 67(1): 97-121. doi: 10.1016/S0016-7037(02)01049-9

    CrossRef Google Scholar

    [49] Beaudoin Y, Scott S D, Gorton M P, Zajacz Z, Halter W. Pb and other ore metals in modern seafloor tectonic environments: Evidence from melt inclusions [J]. Marine Geology, 2007, 242(4): 271-289. doi: 10.1016/j.margeo.2007.04.004

    CrossRef Google Scholar

    [50] Marchev P, Georgiev S, Zajacz Z, Manetti P, Raicheva R, von Quadt A, Tommasini S. High-K ankaramitic melt inclusions and lavas in the Upper Cretaceous Eastern Srednogorie continental arc, Bulgaria: Implications for the genesis of arc shoshonites [J]. Lithos, 2009, 113(1-2): 228-245. doi: 10.1016/j.lithos.2009.03.014

    CrossRef Google Scholar

    [51] Roeder P L, Emslie R F. Olivine-liquid equilibrium [J]. Contributions to Mineralogy and Petrology, 1970, 29(4): 275-289. doi: 10.1007/BF00371276

    CrossRef Google Scholar

    [52] Grove T L, Baker M B. Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends [J]. Journal of Geophysical Research, 1984, 89(B5): 3253-3274. doi: 10.1029/JB089iB05p03253

    CrossRef Google Scholar

    [53] Kogiso T, Hirschmann M M, Frost D J. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts [J]. Earth and Planetary Science Letters, 2003, 216(4): 603-617. doi: 10.1016/S0012-821X(03)00538-7

    CrossRef Google Scholar

    [54] Kogiso T, Hirschmann M M. Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions [J]. Contributions to Mineralogy and Petrology, 2001, 142(3): 347-360. doi: 10.1007/s004100100295

    CrossRef Google Scholar

    [55] Zajacz Z, Halter W. Copper transport by high temper-ature, sulfur-rich magmatic vapor: Evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarrica volcano (Chile) [J]. Earth and Planetary Science Letters, 2009, 282(1-4): 115-121. doi: 10.1016/j.epsl.2009.03.006

    CrossRef Google Scholar

    [56] Dsnyushevsky L V, Sokolov S, Falloon T J. Melt inclusions in olivine phenocrysts: Using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks [J]. Journal of Petrology,2002,43(9): 1651-1671. doi: 10.1093/petrology/43.9.1651

    CrossRef Google Scholar

    [57] Lassiter J C, Hauri E H, Nikogosian I K, Barsczus H G. Chlorine-potassium variations in melt inclusions from Raivavae and Rapa, Austral Islands: Constraints on chlorine recycling in the mantle and evidence for brine-induced melting of oceanic crust [J]. Earth and Planetary Science Letters, 2002, 202(3-4): 525-540. doi: 10.1016/S0012-821X(02)00826-9

    CrossRef Google Scholar

    [58] Seo J H, Guillong M, Aerts M, Zajacz Z, Heinrich C A. Microanalysis of S, Cl, and Br in fluid inclusions by LA-ICP-MS [J].Chemical Geology,2011,284(1-2): 35-44.

    Google Scholar

    [59] Ren Z Y, Ingle S, Takahashi E, Hirano N, Hirata T. The chemical structure of the Hawaiian mantle plume [J]. Nature, 2005, 436(7052): 837-840. doi: 10.1038/nature03907

    CrossRef Google Scholar

    [60] Gunn B M, Coy-Yll R, Watkins N D, Abranson C E, Nougier J. Geochemistry of an oceanite-ankaramite-basalt suite from East Island, Crozet Archipelago [J]. Contributions to Mineralogy and Petrology,1970,28(4): 319-339. doi: 10.1007/BF00388954

    CrossRef Google Scholar

    [61] Schiano P, Eiler J, Hutcheon I, Stolper E. Primitive CaO-rich, silica-undersaturated melts in island arcs: Evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas [J]. Geochemistry, Geophysics, Geosystems, 2000, 1(5): 1999GC000032.

    Google Scholar

    [62] Danyushevsky L V, Leslie R A J, Crawford A J, Durance P. Melt inclusions in primitive olivine phenocrysts: The role of localized reaction processes in the origin of anomalous compositions [J]. Journal of Petrology, 2004, 45(12): 2531-2553. doi: 10.1093/petrology/egh080

    CrossRef Google Scholar

    [63] Reed M J, Candela P A, Piccoli P M. The distribution of rare earth elements between monzogranitic melt and the aqueous volatile phase in experimental investigations at 800℃ and 200 MPa [J]. Contributions to Mineralogy and Petrology, 2000, 140(2): 251-262. doi: 10.1007/s004100000182

    CrossRef Google Scholar

    [64] Gao S, Rudnick R L, Xu W-L, Yuan H-L, Liu Y-S, Walker R J, Puchtel I S, Liu X, Huang H, Wang X-R, Yang J. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton [J]. Earth and Planetary Science Letters, 2008, 270(1-2): 41-53. doi: 10.1016/j.epsl.2008.03.008

    CrossRef Google Scholar

    [65] Burnham C W, Ohmoto H. Late-stage processes of felsic magma [J]. Mining Geology, 1980, 8(Special Issue): 1-11.

    Google Scholar

    [66] Hattori K. High-sulfur magma, a product of fluid dis-charge from underlying mafic magma: Evidence from Mount Pinatubo, Philippines [J].Geology,1993,21(12): 1083-1086. doi: 10.1130/0091-7613(1993)021<1083:HSMAPO>2.3.CO;2

    CrossRef Google Scholar

    [67] Hattori K, Sato H. Magma evolution recorded in plagio-clase zoning in 1991 Pinatubo eruption products [J]. American Mineralogist, 1996, 81(7): 982-994.

    Google Scholar

    [68] Hattori K H, Keith J D. Contribution of mafic melt to porphyry copper mineralization: Evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA [J]. Mineralium Deposita, 2001, 36(8): 799-806. doi: 10.1007/s001260100209

    CrossRef Google Scholar

    [69] 孙艺,赖勇,陈静,舒启海.岩浆残余富集和流体叠加对稀土配分的影响: 熔融包裹体原位LA-ICP-MS研究 [J].矿物学报, 2011(Z1): 291-292.

    Google Scholar

    [70] Glaus R, Kaegi R, Krumeich F, Günther D. Pheno-menological studies on structure and elemental composition of nanosecond and femtosecond laser-generated aerosols with implications on laser ablation inductively coupled plasma mass spectrometry [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2010, 65(9-10): 812-822. doi: 10.1016/j.sab.2010.07.005

    CrossRef Google Scholar

    [71] Paul B, Woodhead J D, Hergt J, Danyushevsky L, Kunihiro T, Nakamura E. Melt inclusion Pb-isotope analysis by LA-MC-ICPMS: Assessment of analytical performance and application to OIB genesis [J]. Chemical Geology, 2011, 289(3-4): 210-223. doi: 10.1016/j.chemgeo.2011.08.005

    CrossRef Google Scholar

    [72] Martin A J, Gehrels G E, DeCelles P G. The tectonic significance of (U,Th)/Pb ages of monazite inclusions in garnet from the Himalaya of central Nepal [J]. Chemical Geology, 2007, 244(1-2): 1-24. doi: 10.1016/j.chemgeo.2007.05.003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(921) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint