Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2018 Vol. 37, No. 1
Article Contents

Shu-guang ZHOU, Shi-bin LIAO, Ke-fa ZHOU, Jin-lin WANG, Ying-di LIU. Application of Portable X-ray Fluorescence Spectrometer in the Analysis of Rock Samples[J]. Rock and Mineral Analysis, 2018, 37(1): 56-63. doi: 10.15898/j.cnki.11-2131/td.201704110051
Citation: Shu-guang ZHOU, Shi-bin LIAO, Ke-fa ZHOU, Jin-lin WANG, Ying-di LIU. Application of Portable X-ray Fluorescence Spectrometer in the Analysis of Rock Samples[J]. Rock and Mineral Analysis, 2018, 37(1): 56-63. doi: 10.15898/j.cnki.11-2131/td.201704110051

Application of Portable X-ray Fluorescence Spectrometer in the Analysis of Rock Samples

  • Portable X-ray Fluorescence Spectrometer (PXRF) is often used in the laboratory and the field because it is a portable, high-efficiency and non-destructive piece of equipment. PXRF can be used to obtain semi-quantitative/quantitative results of multiple elements in geological samples within two minutes. However, there are many factors that can affect the analytical results of geological samples by PXRF, including the surface state, sample heterogeneity, and the measurement time. In order to further understand the effect of sample types and analytical methods on the element contents, the study described here compares the analytical results of rocks by PXRF with those acquired by conventional laboratory analysis. Results of rocks and rock powder samples by PXRF were also compared, and the effect of different detection time on the results of rock powder samples by PXRF was also investigated. A method has been proposed which will reduce the exploration cost and improve work efficiency without a significant loss of analytical precision. The results shows that analytical results of most of the detectable elements is not reliable when analyzing rocks directly by PXRF, especially for the frequently used trace elements (Cu, Pb, Zn, As and Ni). However, PXRF can be used to analyze rock powders and the analytical result is acceptable. There is a difference between the correlation of various elements between rock and rock powder samples by PXRF. Therefore, it is possible to determine whether the rock sample needs to be ground for sample preparation according to the target elements of interest in practical work. The detection time has no obvious effect on the elemental content results. Whether a specific element can be obtained in a relatively short time, further detection time is unnecessary.
  • 加载中
  • [1] Zhang W, Lentz D R, Charnley B E.Petrogeochemical assessment of rock units and identification of alteration/mineralization indicators using portable X-ray fluorescence measurements:Applications to the Fire Tower Zone (W-Mo-Bi) and the North Zone (Sn-Zn-In), Mount Pleasant deposit, New Brunswick, Canada[J].Journal of Geochemical Exploration, 2017, 177:61-72. doi: 10.1016/j.gexplo.2017.02.005

    CrossRef Google Scholar

    [2] Liao S, Tao C, Li H, et al.Use of portable X-ray fluorescence in the analysis of surficial sediments in the exploration of hydrothermal vents on the Southwest Indian Ridge[J].Acta Oceanologica Sinica, 2017, 36(7):66-76. doi: 10.1007/s13131-017-1085-0

    CrossRef Google Scholar

    [3] Ribeiro B T, Silva S H G, Silva E A, et al.Portable X-ray fluorescence (pXRF) applications in tropical soil science[J].Ciência E Agrotecnologia, 2017, 41(3):245-254. doi: 10.1590/1413-70542017413000117

    CrossRef Google Scholar

    [4] 黄阳晓.对比等离子发射光谱法/原子荧光法探讨便携式X射线荧光光谱法在测定土壤重金属中的应用[J].广东化工, 2016, 43(13):261-263. doi: 10.3969/j.issn.1007-1865.2016.13.127

    CrossRef Google Scholar

    Huang Y X.Compared with plasma emission spectrometry, atomic fluorescence method to investigate the portable X-ray fluorescence spectrometry in determination of the application of the soil heavy metal[J].Guangdong Chemical Industry, 2016, 43(13):261-263. doi: 10.3969/j.issn.1007-1865.2016.13.127

    CrossRef Google Scholar

    [5] 王豹, 余建新, 黄标, 等.便携式X射线荧光光谱仪快速监测重金属土壤环境质量[J].光谱学与光谱分析, 2015, 35(6):1735-1740.

    Google Scholar

    Wang B, Yu J X, Huang B, et al.Fast monitoring soil environmental qualities of heavy metal by portable X-ray fluorescence spectrometer[J].Spectroscopy and Spectral Analysis, 2015, 35(6):1735-1740.

    Google Scholar

    [6] 廖学亮, 程大伟, 周超, 等.便携式X射线荧光光谱法检测大米中的镉[J].粮食与饲料工业, 2014(9):62-65.

    Google Scholar

    Liao X L, Cheng D W, Zhou C, et al.Determination of cadmium in rice by portable X-ray fluorescence spectrometer[J].Cereal & Feed Industry, 2014(9):62-65.

    Google Scholar

    [7] 耿志旺, 乐健, 杨永健.便携式X射线荧光光谱仪快速鉴别硫熏八角[J].食品安全质量检测学报, 2017, 8(6):2277-2281.

    Google Scholar

    Geng Z W, Le J, Yang Y J.Rapid screening of sulfur fumigated star anises by field-portable X-ray fluorescence[J].Journal of Food Safety and Quality, 2017, 8(6):2277-2281.

    Google Scholar

    [8] 聂黎行, 张烨, 朱俐, 等.便携式X射线荧光光谱快速无损分析牛黄清心丸(局方)中汞、砷含量及均匀度[J].光谱学与光谱分析, 2017, 37(10):3225-3228.

    Google Scholar

    Ni L X, Zhang Y, Zhu L, et al.Fast and nondestructive analysis of content of mercury and arsenic and homogeneity of Niuhuang Qingxin pills by portable X-ray fluorescence spectrometry[J].Spectroscopy and Spectral Analysis, 2017, 37(10):3225-3228.

    Google Scholar

    [9] 蒋小良, 兰丽丽, 叶丽贞, 等.便携式能量色散X射线荧光光谱法快速检测玩具中5种元素[J].皮革与化工, 2016, 33(6):12-14.

    Google Scholar

    Jiang X L, Lan L L, Ye L Z, et al.Rapid determination of 5 elements in toys by portable energy dispersion X-ray flourescence spectrometry[J].Leather and Chemicals, 2016, 33(6):12-14.

    Google Scholar

    [10] Arne D C, Mackie R A, Jones S A.The use of property-scale portable X-ray fluorescence data in gold exploration:Advantages and limitations[J].Geochemistry:Exploration, Environment, Analysis, 2014, 14(3):233-244. doi: 10.1144/geochem2013-233

    CrossRef Google Scholar

    [11] Sarala P.Comparison of different portable XRF methods for determining till geochemistry[J].Geochemistry:Exploration, Environment, Analysis, 2016, 16(3-4):181-192. doi: 10.1144/geochem2012-162

    CrossRef Google Scholar

    [12] le Vaillant M, Barnes S J, Fisher L, et al.Use and calibration of portable X-ray fluorescence analysers:Application to lithogeochemical exploration for komatiite-hosted nickel sulphide deposits[J].Geochemistry:Exploration, Environment, Analysis, 2014, 14(3):199-209. doi: 10.1144/geochem2012-166

    CrossRef Google Scholar

    [13] 李向超.便携式X射线荧光光谱仪现场测定地质样品中钛[J].冶金分析, 2014, 34(4):32-36.

    Google Scholar

    Li X C.On-site determination of titanium in geological samples by portable X-ray fluorescence spectrometer[J].Metallurgical Analysis, 2014, 34(4):32-36.

    Google Scholar

    [14] Uvarova Y A, Gazley M F, Cleverley J S, et al.Representative, high-spatial resolution geochemistry from diamond drill fines (powders):An example from Brukunga, Adelaide, South Australia[J].Journal of Geochemical Exploration, 2016, 170:1-9. doi: 10.1016/j.gexplo.2016.08.010

    CrossRef Google Scholar

    [15] Young K E, Evans C A, Hodges K V, et al.A review of the handheld X-ray fluorescence spectrometer as a tool for field geologic investigations on Earth and in planetary surface exploration[J].Applied Geochemistry, 2016, 72:77-87. doi: 10.1016/j.apgeochem.2016.07.003

    CrossRef Google Scholar

    [16] Hall G E M, McClenaghan M B, Page L.Application of portable XRF to the direct analysis of till samples from various deposit types in Canada[J].Geochemistry:Exploration, Environment, Analysis, 2016, 16(1):62-84. doi: 10.1144/geochem2015-371

    CrossRef Google Scholar

    [17] 杨桂兰, 商照聪, 李良君, 等.便携式X射线荧光光谱法在土壤重金属快速检测中的应用[J].应用化工, 2016, 45(8):1586-1591.

    Google Scholar

    Yang G L, Shang Z C, Li L J, et al.Application of portable-XRF spectrometry for rapid determination of common heavy metals in soil[J].Applied Chemical Industry, 2016, 45(8):1586-1591.

    Google Scholar

    [18] 邝荣禧, 胡文友, 何跃, 等.便携式X射线荧光光谱法(PXRF)在矿区农田土壤重金属快速检测中的应用研究[J].土壤, 2015, 47(3):589-595.

    Google Scholar

    Kuang R X, Hu W Y, He Y, et al.Application of portable X-ray fluorescence (PXRF) for rapid analysis of heavy metals in agricultural soils around mining area[J].Soils, 2015, 47(3):589-595.

    Google Scholar

    [19] 冉景, 王德建, 王灿, 等.便携式X射线荧光光谱法与原子吸收/原子荧光法测定土壤重金属的对比研究[J].光谱学与光谱分析, 2014, 34(11):3113-3118. doi: 10.3964/j.issn.1000-0593(2014)11-3113-06

    CrossRef Google Scholar

    Ran J, Wang D J, Wang C, et al.Comparison of soil heavy metals determined by AAS/AFS and portable X-ray fluorescense analysis[J].Spectroscopy and Spectral Analysis, 2014, 34(11):3113-3118. doi: 10.3964/j.issn.1000-0593(2014)11-3113-06

    CrossRef Google Scholar

    [20] 杨帆, 郝志红, 刘华忠, 等.便携式能量色散X射线荧光光谱仪在新疆东天山浅钻化探异常查证中的应用[J].岩矿测试, 2015, 34(6):665-671.

    Google Scholar

    Yang F, Hao Z H, Liu H Z, et al.Application of Minipal 4 portable energy dispersive X-ray fluorescence spectrometer in the verification of geochemical anomaly delineated by shallow hole drill core in Eastern Tianshan[J].Rock and Mineral Analysis, 2015, 34(6):665-671.

    Google Scholar

    [21] 龙灵利, 王京彬, 王玉往, 等.东天山卡拉塔格矿集区赋矿火山岩地层时代探讨——SHRIMP锆石U-Pb年龄证据[J].矿产勘查, 2016, 7(1):31-37.

    Google Scholar

    Long L L, Wang J B, Wang Y W, et al.Discussion on the age of ore-host volcanic strata in the Kalatage ore concentration area, Eastern Tianshan:Evidence from SHRIMP zircon U-Pb dating[J].Mineral Exploration, 2016, 7(1):31-37.

    Google Scholar

    [22] 于明杰, 王京彬, 毛启贵, 等.东天山卡拉塔格地区梅岭铜(金)矿床M1号矿体黄铁矿热电性特征及其地质意义[J].矿产勘查, 2016, 7(1):149-156.

    Google Scholar

    Yu M J, Wang J B, Mao Q G, et al.Pyroelectricitical characteristics of pyrite from the No.M1 orebody in Meiling copper-gold deposit and its geological significance in the Kalatage area, Eastern Tianshan[J].Mineral Exploration, 2016, 7(1):149-156.

    Google Scholar

    [23] 于明杰. 东天山卡拉塔格矿集区梅岭铜锌(金)矿床成矿作用[D]: 北京: 中国地质大学(北京), 2016.http: //cdmd. cnki. com. cn/Article/CDMD-11415-1016184117. htm

    Google Scholar

    Yu M J. Metellogeneses in Relation to the Meiling Cu-Zn (Au) Deposit in the Kalatage Ore Concentration Area, Eastern Tianshan Mountain, Xinjiang, NW China[D]. Beijing: China University of Geosciences (Beijing), 2016.

    Google Scholar

    [24] Zhu Y, Weindorf D C, Zhang W.Characterizing soils using a portable X-ray fluorescence spectrometer:1.Soil texture[J].Geoderma, 2011, 167-168(Supplement C):167-177.

    Google Scholar

    [25] 马德锡, 杨进, 陈孝强, 等.便携式X荧光仪在多金属矿区的应用[J].物探与化探, 2013, 37(1):63-66. doi: 10.11720/wtyht.2013.1.11

    CrossRef Google Scholar

    Ma D X, Yang J, Chen X Q, et al.The application of portable X-ray fluorescence instrument to the polymetallic ore district[J].Geophysical & Geochemical Exploration, 2013, 37(1):63-66. doi: 10.11720/wtyht.2013.1.11

    CrossRef Google Scholar

    [26] Fisher L, Gazley M F, Baensch A, et al.Resolution of geochemical and lithostratigraphic complexity:A workflow for application of portable X-ray fluorescence to mineral exploration[J].Geochemistry:Exploration, Environment, Analysis, 2014, 14(2):149-159. doi: 10.1144/geochem2012-158

    CrossRef Google Scholar

    [27] 董天宇, 王海江, Yunger J A, 等.便携式X射线荧光光谱仪实验室异位检测法的实用性研究[J].土壤, 2017, 49(4):853-857.

    Google Scholar

    Dong T Y, Wang H J, Yunger J A, et al.Practicality validation of portable X-ray fluorescence for ex-situ measuring soil heavy metals in laboratory[J].Soils, 2017, 49(4):853-857.

    Google Scholar

    [28] Gazley M F, Bonnett L C, Fisher L A, et al.A workflow for exploration sampling in regolith-dominated terranes using portable X-ray fluorescence:Comparison with laboratory data and a case study[J].Australian Journal of Earth Sciences, 2017, 64(7):903-917. doi: 10.1080/08120099.2017.1367721

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(4306) PDF downloads(83) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint