Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2018 Vol. 37, No. 3
Article Contents

Hong-zhang DAI, Deng-hong WANG, Li-jun LIU, Fan HUANG, Cheng-hui WANG. Study on Emerald-level Beryl from the Zhen'an W-Be Polymetallic Deposit in Shaanxi Province by Electron Probe Microanalyzer and Micro X-ray Diffractometer[J]. Rock and Mineral Analysis, 2018, 37(3): 336-345. doi: 10.15898/j.cnki.11-2131/td.201712140193
Citation: Hong-zhang DAI, Deng-hong WANG, Li-jun LIU, Fan HUANG, Cheng-hui WANG. Study on Emerald-level Beryl from the Zhen'an W-Be Polymetallic Deposit in Shaanxi Province by Electron Probe Microanalyzer and Micro X-ray Diffractometer[J]. Rock and Mineral Analysis, 2018, 37(3): 336-345. doi: 10.15898/j.cnki.11-2131/td.201712140193

Study on Emerald-level Beryl from the Zhen'an W-Be Polymetallic Deposit in Shaanxi Province by Electron Probe Microanalyzer and Micro X-ray Diffractometer

More Information
  • BACKGROUND A new deposit type with a scheelite-beryl-molybdenite assemblage was first discovered in the Zhen'an area of Shaanxi Province. BAOBJECTIVES The research on chromatic mechanism and genetic mechanism of emerald was carried out. METHODS Combined with the geological survey, Electron Microprobe and in-situ Micro X-ray Diffractomer were used to conduct mineral research. RESULTS The emerald mainly occurs in the quartz (calcite) veins as euhedral crystal and is associated with scheelite. Both the core and rim of the emerald with high V2O3 contents of 0.64%-0.98% and 1.04%-1.42%, respectively, show an increased V2O3 trend from core to rim. Diffraction data show that the emerald is normal beryl and has two kinds of isomorphous substitution mechanism, Al↔Me2+ and Be↔Li. Vanadium is the main coloring element of emerald and was mainly derived from carbonaceous slate, mica schist, and dolomitic marble, whereas Be, Si and Al were derived from deep acidic igneous rocks. CONCLUSIONS The discovery provides basic geological data for the comprehensive development and utilization of tungsten and antimony mineral resources in the deposit, and indicates new prospecting directions for continued searching for rare metal deposits in the region and deep areas of the South Qinling.
  • 加载中
  • [1] 胡荣荣, 张世涛.祖母绿矿床研究现状[J].化工矿产地质, 2006, 28(4):234-240.

    Google Scholar

    Hu R R, Zhang S T.Current research situation of the world emerald deposits and the existing problems[J].Geology of Chemical Minerals, 2006, 28(4):234-240.

    Google Scholar

    [2] 胡荣荣, 张世涛.世界祖母绿矿床研究现状及存在问题[J].矿产与地质, 2007, 21(1):94-99.

    Google Scholar

    Hu R R, Zhang S T.Status of worldwide emerald deposit research and some problems[J].Mineral Resources and Geology, 2007, 21(1):94-99.

    Google Scholar

    [3] Gavrilenko E, Pérez B C, Bolibar R C, et al.Emeralds from the Delbegetey deposit (Kazakhstan):Mineralogical characteristics and fluid-inclusion study[J].Mineralogical Magazine, 2006, 70(2):159-173. doi: 10.1180/0026461067020321

    CrossRef Google Scholar

    [4] Ottaway T L, Wicks F J, Bryndzia L T, et al.Formation of the Muzo hydrothermal emerald deposit in Colombia[J].Nature, 1994, 369:552-554. doi: 10.1038/369552a0

    CrossRef Google Scholar

    [5] Bragg W L, West J.The structure of beryl, Be3Al2Si6O18[J].Royal Society of London Proceedings, 1926, 111(759):691-714. doi: 10.1098/rspa.1926.0088

    CrossRef Google Scholar

    [6] 刘琰, 邓军, 孙岱生, 等.四川虎牙雪宝顶W-Sn-Be矿床矿物学标型特征及流体对矿物形态的影响[J].地球科学——中国地质大学学报, 2007, 32(1):75-81.

    Google Scholar

    Liu Y, Deng J, Sun D S, et al.Morphology and gensis typomorphism of minerals in W-Sn-Be deposit of Huya, Sichuan[J]. Earth Science-Journal of China University of Geosciences, 2007, 32(1):75-81.

    Google Scholar

    [7] 阮青锋, 张良钜, 张昌龙, 等.绿柱石的成因与特征的研究[J].矿产与地质, 2008, 22(3):265-269.

    Google Scholar

    Ruan Q F, Zhang L J, Zhang C L, et al.Genesis and characteristics of beryl[J].Mineral Resources & Geology, 2008, 22(3):265-269.

    Google Scholar

    [8] Garcí J M, Lastra A, Barriuso M T, et al.Origin of the different color of ruby and emerald[J].Physical Review B, 2005, 72(11):3104.

    Google Scholar

    [9] 钟倩, 廖宗廷, 周征宇, 等.水热法合成Paraíba色绿柱石的宝石学特征[J].宝石和宝石学杂志, 2016, 18(6):1-7.

    Google Scholar

    Zhong Q, Liao Z T, Zhou Z Y, et al.Gemmological characteristics of hydrothermal synthetic paraíba-cloour beryl[J].Journal of Gems & Gemmology, 2016, 18(6):1-7.

    Google Scholar

    [10] 申柯娅.天然祖母绿与合成祖母绿的成分及红外吸收光谱研究[J].岩矿测试, 2011, 30(2):233-237.

    Google Scholar

    Shen K Y.Study on chemical compositions and infrared absorption spectra of natural and synthetic emeralds[J].Rock and Mineral Analysis, 2011, 30(2):233-237.

    Google Scholar

    [11] 梁婷.云南祖母绿的呈色机理初探[J].宝石和宝石学杂志, 2001, 3(4):21-24.

    Google Scholar

    Liang T.Study on coluration mechanism of emerald from Yunnan Province[J].Journal of Gems & Gemmology, 2001, 3(4):21-24.

    Google Scholar

    [12] 梁婷.祖母绿的红外光谱特征研究[J].长安大学学报(地球科学版), 2003, 25(2):10-13.

    Google Scholar

    Liang T.The study on infrared absorption pectroscopic characteristics of emeralds[J].Journal of Chang'an University (Earth Science Edition), 2003, 25(2):10-13.

    Google Scholar

    [13] 张文兰, 王汝成, 蔡淑月.超轻元素Be元素的电子探针定量分析——以绿柱石为例[J].电子显微学报, 2006(增刊1):293-294.

    Google Scholar

    Zhang W L, Wang R C, Cai S Y.Quantitative analysis of ultralight element Be by electron microprobe-Taking beryl as an example[J].Journal of Chinese Electron Microscopy Society, 2006(Supplement 1):293-294.

    Google Scholar

    [14] Liu J J, Zhai D G, Dai H Z, et al.Nanoscale character-ization of Au2Te grains from the Sandaowanzi gold deposit, Northeast China[J].The Canadian Mineralogist, 2017, 55(2):181-194. doi: 10.3749/canmin.1600077

    CrossRef Google Scholar

    [15] Uher P, Chudík P, Bačík P, et al.Beryl composition and evolution trends:An example from granitic pegmatites of the beryl-columbite subtype, Western Carpathians, Slovakia[J].Journal of Geosciences, 2010, 55(1):69-80.

    Google Scholar

    [16] Wang R C, Che X D, Zhang W L, et al.Geochemical evolution and late re-equilibration of Na-Cs-rich beryl from the Koktokay #3 pegmatite (Altai, NW China)[J].European Journal of Mineralogy, 2009, 21(4):795-809. doi: 10.1127/0935-1221/2009/0021-1936

    CrossRef Google Scholar

    [17] Viana R R, Jordtevangelista H, Costa G M D, et al.Characterization of beryl (aquamarine variety) from pegmatites of Minas Gerais, Brazil[J].Physics and Chemistry of Minerals, 2002, 29(10):668-679. doi: 10.1007/s00269-002-0278-y

    CrossRef Google Scholar

    [18] Evensen J M.Beryllium in silicic magmas and the origin of beryl-bearing pegmatites[J].Reviews in Mineralogy & Geochemistry, 2002, 50(1):445-486.

    Google Scholar

    [19] Sabot B.Fluid inclusions in Ianapera emerald, Southern Madagasca[J].International Geology Review, 2005, 47(6):647-662. doi: 10.2747/0020-6814.47.6.647

    CrossRef Google Scholar

    [20] Moore T P. Emeralds of the World[M]//Mineralogical Record. 2003: 10-23, 25-33, 74-78.

    Google Scholar

    [21] Groat L A, Giuliani G, Marshall D D, et al.Emerald deposits and occurrences:A review[J].Ore Geology Reviews, 2008, 34(1-2):87-112. doi: 10.1016/j.oregeorev.2007.09.003

    CrossRef Google Scholar

    [22] Groat L A, Marshall D D, Giuliani G, et al.Mineralogical and geochemical study of the Regal Ridge emerald showing, Southeastern Yukon[J].Canadian Mineralogist, 2002, 40(5):1313-1338. doi: 10.2113/gscanmin.40.5.1313

    CrossRef Google Scholar

    [23] Cheilletz A, Féraud G, Giuliani G, et al.Time-pressure and temperature constraints on the formation of Colombian emeralds:An 40Ar/39Ar laser microprobe and fluid inclusion study[J].Economic Geology, 1994, 89:361-380. doi: 10.2113/gsecongeo.89.2.361

    CrossRef Google Scholar

    [24] 代鸿章, 王登红, 王成辉, 等.中央造山带秦巴地区发现石英脉型黑钨矿[J].岩矿测试, 2017, 36(5):559-560.

    Google Scholar

    Dai H Z, Wang D H, Wang C H, et al.New discovery of quartz vein-type of wolframite ores in the Qinling-Daba area, Central Orogenic Belt, China[J].Rock and Mineral Analysis, 2017, 36(5):559-560.

    Google Scholar

    [25] 许乃岑, 沈加林, 张静.X射线衍射-X射线荧光光谱-电子探针等分析测试技术在玄武岩矿物鉴定中的应用[J].岩矿测试, 2015, 34(1):75-81.

    Google Scholar

    Xu N C, Shen J L, Zhang J.Application of X-ray diffraction, X-ray fluorescence spectrometry and electron microprobe in the identification of basalt[J].Rock and Mineral Analysis, 2015, 34(1):75-81.

    Google Scholar

    [26] 刘永先, 范洪斌.云南祖母绿特征及开发利用初探[J].矿产综合利用, 1997(6):22-25.

    Google Scholar

    Liu Y X, Fan H B.A preliminary study on the characteristics and exploitation and utilization of emeralds in Yunnan[J].Multipurpose Utilization of Mineral Resources, 1997(6):22-25.

    Google Scholar

    [27] 王濮, 潘兆橹, 翁玲宝, 等.统矿物学(中册)[M].北京:地质出版社, 1982:155-156.

    Google Scholar

    Wang P, Pan Z L, Weng L B, et al.Systematic Mineralogy (Volume 2)[M].Beijing:Geological Publishing House, 1982:155-156.

    Google Scholar

    [28] Aurisicchio C, Fioravanti G, Grubessi O, et al.Reappra-isal of the crystal chemistry of beryl[J].American Minealogist, 1988, 73:826-837.

    Google Scholar

    [29] 黄文清, 倪培, 水汀, 等.云南麻栗坡祖母绿的矿物学特征研究[J].岩石矿物学杂志, 2015, 34(1):103-109.

    Google Scholar

    Huang W Q, Ni P, Shui T, et al.Mineralogical characteristics of emerald from Malipo, Yunnan Province[J].Acta Petrologica et Mineralogica, 2015, 34(1):103-109.

    Google Scholar

    [30] 任伟, 汪立今, 李甲平.电子探针和X射线衍射仪测定新疆祖母绿宝石[J].岩矿测试, 2010, 29(2):179-181.

    Google Scholar

    Ren W, Wang L J, Li J P. Detection of emerald from Xinjiang by electron probe microanalyzer and X-ray diffractometer[J].Rock and Mineral Analysis, 2010, 29(2):179-181.

    Google Scholar

    [31] JCPDS. International Center for Diffraction Data[Z]. [PDF#09-0430], 1988.

    Google Scholar

    [32] Schwartz D, Giuliani G.Emerald deposits:A review[J].Australian Gemmologist, 2001, 1:17-23.

    Google Scholar

    [33] Vapnik Y, Moroz I, Roth M, et al.Formation of emeralds at pegmatite-ultramafic contacts based on fluid inclusions in Kianjavato emerald, Mananjary deposits, Madagascar[J].Mineralogical Magazine, 2006, 70:141-158. doi: 10.1180/0026461067020320

    CrossRef Google Scholar

    [34] 汪立今, 彭雪峰, 李甲平, 等.新疆祖母绿(绿柱石)矿产出地质特征与找矿矿物学[J].矿物学报, 2011, 31(3):604-608.

    Google Scholar

    Wang L J, Peng X F, Li J P, et al.A study on basic geological characteristics and mineralogy of ore prospecting in Xinjiang emerald (beryl) deposit[J].Acta Mineralogica Sinica, 2011, 31(3):604-608.

    Google Scholar

    [35] Dai H Z, Wang D H, Wang C H, et al.Re-Os isotopic dating of a W-Be polymetallic deposit in the Southern Qinling Region, China[J].Acta Geologica Sinica (English Edition), 2018, 92(1):414-415. doi: 10.1111/acgs.2018.92.issue-1

    CrossRef Google Scholar

    [36] 刘茜. 陕西镇安钨矿床特征及成因研究[D]. 北京: 中国地质大学(北京), 2013.http://cdmd.cnki.com.cn/Article/CDMD-11415-1013270343.htm

    Google Scholar

    Liu Q. The Characterisitcs and Genesis of the Zhen'an W Deposit, Shannxi Province, China[D]. Beijing: China University of Geoscinces (Beijing), 2013.

    Google Scholar

    [37] 盛继福, 王登红.中国矿产地质志·钨矿卷[M].北京:地质出版社(待出版), 2018.

    Google Scholar

    Sheng J F, Wang D H.China's Mineral Geology (Tungsten Ore Volume)[M].Beijing:Geological Publishing House, 2018(in press).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(2877) PDF downloads(133) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint