Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2014 Vol. 33, No. 4
Article Contents

Chang-ling LIU, Qing-guo MENG. Applications of X-ray Diffraction in Natural Gas Hydrate Research[J]. Rock and Mineral Analysis, 2014, 33(4): 468-479.
Citation: Chang-ling LIU, Qing-guo MENG. Applications of X-ray Diffraction in Natural Gas Hydrate Research[J]. Rock and Mineral Analysis, 2014, 33(4): 468-479.

Applications of X-ray Diffraction in Natural Gas Hydrate Research

  • Natural gas hydrates are clathrate hydrates formed from gas molecules (e.g. hydrocarbon gases and non-hydrocarbon gases such as CO2 and H2S) and water molecules under high pressure and low temperature, with three types of crystal structure, such as cubic (Ⅰ), rhombus (Ⅱ) and hexagonal (H). The structural characteristics and variation rule of clathrate hydrate is significant for understanding the formation mechanism, micro-kinetic, phase transformation and identification of gas hydrate. X-ray Diffraction (XRD) is an analytical technique that is used to analyze the crystal micro-structure (i.e. atom orientation) based on the diffraction pattern produced by X-ray irradiating the crystal or some non-crystal substances. When XRD is applied in gas hydrate research, not only can it provide the important information such as structure type and lattice parameter of gas hydrate, but it can also be used to observe the micro-kinetic process of hydrate formation and dissociation. Several applications of XRD in natural gas hydrates research, such as structural characteristics, in situ observation of gas hydrates formation/dissociation, and hydrate sample identification on field are reviewed in this paper. It is well known that the crystal lattice of structure Ⅰ and Ⅱ is approximately 12.0×10-10 m and 17.3×10-10 m, respectively, and approximately 12.2×10-10 m and 10.0×10-10 m along a and c axis for structure H. Therefore, the crystal structure type can be easily identified with the accurate lattice parameters measured by XRD. Now, the XRD technique has been already conducted in identifying and obtaining the structural information of gas hydrate samples recovered from marine and permafrost region overseas. In addition, the structure transformation and influencing factors of gas hydrate can be investigated based on the lattice parameter variation of gas hydrate, which was measured under different conditions. The experimental results show that all the mixture composition, the volume and diameter of guest molecules as well as the temperature can affect the lattice parameter and structure of gas hydrate. In situ XRD technique under high pressure is also used to measure the variation of diffraction peaks during gas hydrate formation/dissociation, and eventually to investigate the kinetic processes of gas hydrate formation and dissociation. The results show that two stages were observed during gas hydrate formation/dissociation, the fast process of hydrate formation/dissociation on the gas-liquid (solid) surface and the gas molecules diffusion process in the liquid (solid). The last stage controls the whole reaction speed. At present, although the XRD technique is widely used in gas hydrate research abroad, it is just beginning in China. It is believed that the XRD technique can be used in gas hydrate research to resolve the basic scientific problems such as structure type identification and lattice parameter measurement, and will provide a powerful technological support for gas hydrate relevant theory research once it combines with other analytical techniques like NMR, IR and X-CT.
  • 加载中
  • [1]  Milkov A V.Global estimates of hydrate-bound gas in marine sediments: How much is really out there [J].Earth-Science Reviews, 2004, 66(3):183-197.

    Google Scholar

    [2] Lu H, Ripmeester J A. A laboratory protocol for the analysis of natural gas hydrates [C]//6th International Conference on Gas Hydrates, Vancouver, British Columbia, CANADA, 2008.

    Google Scholar

    [3] Rojas Y, Lou X.Instrumental analysis of gas hydrates properties [J].Asia-Pacific Journal of Chemical Engineering, 2010, 5(2):310-323. doi: 10.1002/apj.v5:2

    CrossRef Google Scholar

    [4] 夏宁,刘昌岭,业渝光,孟庆国,林学辉,贺行良.显微激光拉曼光谱测定天然气水合物的方法研究[J].岩矿测试,2011,30(4):416-422.

    Google Scholar

    [5] 刘昌岭,孟庆国,业渝光.固体核磁共振技术在气体水合物研究中的应用[J].波谱学杂志,2012, 29(3):465-474.

    Google Scholar

    [6] 刘昌岭,业渝光,孟庆国.显微激光拉曼光谱测定甲烷水合物的水合指数[J].光谱学与光谱分析,2010, 30(4):963-966.

    Google Scholar

    [7] Udachin K A, Ratcliffe C I, Ripmeester J A. Structure, composition, and thermal expansion of CO2 hydrate from single crystal X-ray diffraction measurements[J].The Journal of Physical Chemistry B, 2001, 105(19):4200-4204. doi: 10.1021/jp004389o

    CrossRef Google Scholar

    [8] Uchida T, Takeya S, Kamata Y, Ikeda I Y, Nagao J, Ebinuma T, Narita H, Zatsepina O, Buffett B A. Spectroscopic observations and thermodynamic calculations on clathrate hydrates of mixed gas containing methane and ethane: Determination of structure, composition and cage occupancy[J].The Journal of Physical Chemistry B, 2002, 106(48):12426-12431. doi: 10.1021/jp025884i

    CrossRef Google Scholar

    [9] Uchida T, Takeya S, Kamata Y, Ohmura R, Narita H.Spectroscopic measurements on binary, ternary, and quaternary mixed-gas molecules in clathrate structures [J].Industrial & Engineering Chemistry Research, 2007, 46(14):5080-5087.

    Google Scholar

    [10] Udachin K A, Ratcliffe C I, Ripmeester J A.Single crystal diffraction studies of structure Ⅰ, Ⅱ and H hydrates: Structure, cage occupancy and composition [J].Journal of Supramolecular Chemistry, 2002, 2(4):405-408.

    Google Scholar

    [11] Takeya S, Kamata Y, Uchida T, Nagao J, Ebinuma T, Narita H, Hori A, Hondoh T.Coexistence of structure Ⅰ and Ⅱ hydrates formed from a mixture of methane and ethane gases [J].Canadian Journal of Physics, 2003, 81(1-2):479-484. doi: 10.1139/p03-038

    CrossRef Google Scholar

    [12] Takeya S, Uchida T, Kamata Y, Nagao J, Kida M, Minami H, Sakagami H, Hachikubo A, Takahashi N, Shoji H, Khlystov O, Grachev M, Soloviev V.Lattice expansion of clathrate hydrates of methane mixtures and natural gas[J].Angewandte Chemie, 2005, 117(42):7088-7091. doi: 10.1002/(ISSN)1521-3757

    CrossRef Google Scholar

    [13] Takeya S, Hori A, Uchida T, Ohmura R.Crystal lattice size and stability of type H clathrate hydrates with various large-molecule guest substances[J].The Journal of Physical Chemistry B,2006, 110(26):12943-12947. doi: 10.1021/jp060198v

    CrossRef Google Scholar

    [14] Susilo R, Ripmeester J A, Englezos P.Characterization of gas hydrates with PXRD, DSC, NMR, and Raman spectroscopy[J].Chemical Engineering Science, 2007, 62(15):3930-3939. doi: 10.1016/j.ces.2007.03.045

    CrossRef Google Scholar

    [15] Davidson D W, Garg S K, Gough S R, Handa Y P, Ratcliffe C I, Ripmeester J A, Tse J S.Laboratory analysis of a naturally occurring gas hydrate from sediment of the Gulf of Mexico[J].Geochimica et Cosmochimica Acta, 1986, 50(4):619-623. doi: 10.1016/0016-7037(86)90110-9

    CrossRef Google Scholar

    [16] Lu H L, Moudrakovski I, Riedel M, Spence G, Dutrisac R, Ripmeester J, Wright F, Dallimore S.Occurrence and structural characterization of gas hydrates associated with a cold vent field, offshore Vancouver Island [J]. Journal of Geophysical Research: Solid Earth,2005, 110(B10):10-18.

    Google Scholar

    [17] Lee J W, Kim D Y, Lee H.Phase behavior and structure transition of the mixed methane and nitrogen hydrates [J].Korean Journal of Chemical Engineering, 2006, 23(2):299-302. doi: 10.1007/BF02705731

    CrossRef Google Scholar

    [18] Jeffrey G A, McMullan R K.The clathrate hydrates[J].Progress in Inorganic Chemistry, 2007, 8:43-108.

    Google Scholar

    [19] Klapproth A, Goreshnik E, Staykova D, Klein H, Kuhs W F.Structural studies of gas hydrates[J].Canadian Journal of Physics, 2003, 81(1-2):503-518. doi: 10.1139/p03-024

    CrossRef Google Scholar

    [20] Seo Y T, Lee H.Structure and guest distribution of the mixed carbon dioxide and nitrogen hydrates as revealed by X-ray diffraction and 13C NMR spectroscopy[J].The Journal of Physical Chemistry B, 2004, 108(2):530-534. doi: 10.1021/jp0351371

    CrossRef Google Scholar

    [21] Tse J S, McKinnon W R, Marchi M.Thermal expansion of structure Ⅰ ethylene oxide hydrate[J].Journal of Physical Chemistry, 1987, 91(15):4188-4193. doi: 10.1021/j100299a047

    CrossRef Google Scholar

    [22] Tse J S.Dynamical properties and stability of clathrate hydrates[J].Annals of the New York Academy of Sciences, 1994, 715(1):187-206.

    Google Scholar

    [23] Takeya S, Nagaya H, Matsuyama T, Hondoh T, Lipenkov V Y.Lattice constants and thermal expansion coefficient of air clathrate hydrate in deep ice cores from Vostok, Antarctica[J].The Journal of Physical Chemistry B, 2000, 104(4):668-670. doi: 10.1021/jp993344o

    CrossRef Google Scholar

    [24] Takeya S, Kida M, Minami H, Sakagamib H, Hachikubob A, Takahashib N, Shojib H, Solovievc V, Wallmannd K, Biebowe N, Obzhirovf A, Salomatinf A, Poortg J.Structure and thermal expansion of natural gas clathrate hydrates[J].Chemical Engineering Science, 2006, 61(8):2670-2674. doi: 10.1016/j.ces.2005.11.049

    CrossRef Google Scholar

    [25] Koh C A, Savidge J L, Tang C C.Time-resolved in-situ experiments on the crystallization of natural gas hydrates[J].The Journal of Physical Chemistry, 1996, 100(16):6412-6414. doi: 10.1021/jp960094s

    CrossRef Google Scholar

    [26] Takeya S, Hondoh T, Uchida T.In situ observation of CO2 hydrate by X-ray diffraction[J].Annals of the New York Academy of Sciences, 2000, 912(1):973-982.

    Google Scholar

    [27] Huo Z, Hester K, Sloan E D, Miller K T.Methane hydrate nonstoichiometry and phase diagram[J].AIChE Journal, 2003, 49(5):1300-1306. doi: 10.1002/(ISSN)1547-5905

    CrossRef Google Scholar

    [28] Uchida T, Takeya S, Wilson L D, Tulk C A, Ripmeester J A, Nagao J, Ebinuma T, Narita H.Measurements of physical properties of gas hydrates and in situ observations of formation and decomposition processes via Raman spectroscopy and X-ray diffraction[J].Canadian Journal of Physics, 2003, 81(1-2):351-357. doi: 10.1139/p03-017

    CrossRef Google Scholar

    [29] Uchida T, Ohmura R, Ikeda I Y, Nagao J, Takeya S, Hori A.Phase equilibrium measurements and crystallographic analyses on structure-H type gas hydrate formed from the CH4-CO2-neohexane-water system[J].The Journal of Physical Chemistry B, 2006, 110(10):4583-4588. doi: 10.1021/jp056503e

    CrossRef Google Scholar

    [30] Feklistov V V, Timchenko A K, Ancharov A I, Sheromov M A, Manakov A Y.A chamber for X-ray diffractometry of gas hydrates samples for pressures of up to 700 atm[J].Instruments and Experimental Techniques, 2005, 48(6):826-828. doi: 10.1007/s10786-005-0146-3

    CrossRef Google Scholar

    [31] Kurnosov A, Dubrovinsky L, Kuznetsov A, Dmitriev V.High-pressure/high-temperature behavior of the methane-ammonia-water system up to 3 GPa[J].Zeitschrift Fur Naturforschung B, 2006, 61(12):1573-1576.

    Google Scholar

    [32] Takeya S, Shimada W, Kamata Y, Ebinuma T, Uchida T, Nagao J, Narita H.In situ X-ray diffraction measurements of the self-preservation effect of CH4 hydrate[J].The Journal of Physical Chemistry A, 2001, 105(42):9756-9759. doi: 10.1021/jp011435r

    CrossRef Google Scholar

    [33] Sloan E D.Fundamental principles and applications of natural gas hydrates[J].Nature,2003, 426(6964):353-363. doi: 10.1038/nature02135

    CrossRef Google Scholar

    [34] Claussen W F.A second water structure for insert gas hydrates[J].Journal of Chemical Physics,1951, 19:1425-1426.

    Google Scholar

    [35] Claussen W F.Suggested structures of water in inert gas hydrates[J].Journal of Chemical Physics, 1951, 19:662.

    Google Scholar

    [36] Ripmeester J A, John S T, Ratcliffe C I, Powell B M.A new clathrate hydrate structure[J].Nature, 1987, 325(6100):135-136. doi: 10.1038/325135a0

    CrossRef Google Scholar

    [37] Takeya S, Ebinuma T, Uchida T, Nagao J, Narita H.Self-preservation effect and dissociation rates of CH4 hydrate[J].Journal of Crystal Growth, 2002, 237:379-382.

    Google Scholar

    [38] Muromachi S, Takeya S, Yamamoto Y, Ohmura R.Characterization of tetra-n-butylphosphonium bromide semiclathrate hydrate by crystal structure analysis[J].CrystEngComm, 2014, 16:2056-2060. doi: 10.1039/c3ce41942h

    CrossRef Google Scholar

    [39] Shpakov V P, Tse J S, Tulk C A, Kvammec B, Belosludov V R.Elastic moduli calculation and instability in structure Ⅰ methane clathrate hydrate[J].Chemical Physics Letters, 1998, 282(2):107-114. doi: 10.1016/S0009-2614(97)01241-4

    CrossRef Google Scholar

    [40] Collett T S, Lee M W.Reservoir characterization of marine and permafrost associated gas hydrate accumulations with downhole well logs[J].Annals of the New York Academy of Sciences, 2000, 912(1):51-64.

    Google Scholar

    [41] Stern L A, Circone S, Kirby S H, Durham W B.Anomalous preservation of pure methane hydrate at 1 atm[J].The Journal of Physical Chemistry B, 2001, 105(9):1756-1762. doi: 10.1021/jp003061s

    CrossRef Google Scholar

    [42] Ikeda-Fukazawa T, Hondoh T, Fukumura T, Fukazawa H, Mae S.Variation in N2/O2 ratio of occluded air in Dome Fuji Antarctic ice[J].Journal of Geophysical Research: Atmospheres (1984—2012), 2001, 106(D16):17799-17810. doi: 10.1029/2000JD000104

    CrossRef Google Scholar

    [43] Shin K, Moudrakovski I L, Davari M D, Alavi S, Ratcliffe C I, Ripmeester J A.Crystal engineering the clathrate hydrate lattice with NH4F[J].CrystEngComm, 2014, Advance Article.DOI: 10.1039/C3CE41661E.

    CrossRef Google Scholar

    [44] Hendriks E M, Edmonds B, Moorwood R A S, Szczepanski R.Hydrate structure stability in simple and mixed hydrates[J].Fluid Phase Equilibria, 1996, 117(1):193-200.

    Google Scholar

    [45] Subramanian S, Kini R A, Dec S F, Sloan E D.Evidence of structure Ⅱ hydrate formation from methane+ ethane mixtures[J].Chemical Engineering Science, 2000, 55(11):1981-1999. doi: 10.1016/S0009-2509(99)00389-9

    CrossRef Google Scholar

    [46] Subramanian S, Ballard A L, Kini R A, Dec S F, Sloan E D.Structural transitions in methane+ethane gas hydrates—part Ⅰ: Upper transition point and applications[J].Chemical Engineering Science, 2000, 55(23):5763-5771. doi: 10.1016/S0009-2509(00)00162-7

    CrossRef Google Scholar

    [47] Ballard A L, Sloan E D.Optimizing thermodynamic parameters to match methane and ethane structural transition in natural gas hydrate equilibria[J].Annals of the New York Academy of Sciences, 2000, 912(1):702-712.

    Google Scholar

    [48] Schicks J M, Naumann R, Erzinger J, Hester K C, Koh C A, Sloan E D.Phase transitions in mixed gas hydrates: Experimental observations versus calculated data[J].The Journal of Physical Chemistry B, 2006, 110(23):11468-11474. doi: 10.1021/jp0612580

    CrossRef Google Scholar

    [49] Schicks J M, Ripmeester J A.The coexistence of two different methane hydrate phases under moderate pressure and temperature conditions: Kinetic versus thermodynamic products[J].Angewandte Chemie International Edition, 2004, 43(25):3310-3313. doi: 10.1002/(ISSN)1521-3773

    CrossRef Google Scholar

    [50] Staykova D K, Kuhs W F, Salamatin A N, Hansen T.Formation of porous gas hydrates from ice powders: Diffraction experiments and multistage model [J].The Journal of Physical Chemistry B, 2003, 107(37):10299-10311. doi: 10.1021/jp027787v

    CrossRef Google Scholar

    [51] Matsumoto Y, Grim R G, Khan N M, Sugahara T, Ohgaki K, Sloan E D, Koh C A, Sum A K.Investigating the thermodynamic stabilities of hydrogen and methane binary gas hydrates[J].The Journal of Physical Chemistry C, 2014, 118(7):3783-3788. doi: 10.1021/jp411140z

    CrossRef Google Scholar

    [52] Kondo W, Ohtsuka K, Ohmura R, Takeya S, Mori Y H.Clathrate-hydrate formation from a hydrocarbon gas mixture: Compositional evolution of formed hydrate during an isobaric semi-batch hydrate-forming operation [J].Applied Energy, 2014, 113:864-871. doi: 10.1016/j.apenergy.2013.08.033

    CrossRef Google Scholar

    [53] Luzi M, Schicks J M, Naumann R, Erzinger J.Systematic kinetic studies on mixed gas hydrates by Raman spectroscopy and powder X-ray diffraction[J].The Journal of Chemical Thermodynamics, 2012, 48:28-35. doi: 10.1016/j.jct.2011.12.004

    CrossRef Google Scholar

    [54] Lee H H, Ahn S H, Nam B U, Kim B S, Lee G W, Moon D, Shin H J, Han K W, Yoon J H.Thermodynamic stability, spectroscopic identification, and gas storage capacity of CO2-CH4-N2 mixture gas hydrates: Implications for landfill gas hydrates[J].Environmental Science & Technology, 2012, 46(7):4184-4190.

    Google Scholar

    [55] Seo Y, An S, Park J W, Kim B S, Komai T, Yoon J H.Occupation and release behavior of guest molecules in CH4, CO2, N2 and acetone mixture hydrates: An in situ study by Raman spectroscopy[J].Industrial & Engineering Chemistry Research, 2014, 53 (14):6179 6184.

    Google Scholar

    [56] Lee H, Seo Y, Seo Y T, Moudrakovski I L, Ripmeester J A.Recovering methane from solid methane hydrate with carbon dioxide[J].Angewandte Chemie International Edition, 2003, 42(41):5048-5051. doi: 10.1002/(ISSN)1521-3773

    CrossRef Google Scholar

    [57] Kuhs W F, Klapproth A, Gotthardt F, Techmer K, Heinrichs T.The formation of meso- and macroporous gas hydrates[J].Geophysical Research Letters, 2000, 27(18):2929-2932. doi: 10.1029/2000GL006112

    CrossRef Google Scholar

    [58] Uchida T, Moriwaki M, Takeya S, Ikeda I Y, Ohmura R, Nagao J, Minagawa H, Ebinuma T, Narita H, Gohara K, Mae S.Two-step formation of methane propane mixed gas hydrates in a batch-type reactor[J].AIChE Journal, 2004, 50(2):518-523. doi: 10.1002/(ISSN)1547-5905

    CrossRef Google Scholar

    [59] Yakushev V S, Istomin V A.Gas-hydrates self preser-vation effect[J].Physics and Chemistry of Ice, 1992:136-140.

    Google Scholar

    [60] Stern I A, Kirky S H, Durham W B.Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice[J].Science-AAAS-Weekly Paper Edition, 1996, 273(5283):1843-1847.

    Google Scholar

    [61] Stern L A, Circone S, Kirby S H, Durham W B.Temperature, pressure, and compositional effects on anomalous or "self" preservation of gas hydrates[J].Canadian Journal of Physics, 2003, 81(1-2):271-283. doi: 10.1139/p03-018

    CrossRef Google Scholar

    [62] Circone S, Stern L A, Kirby S H.The role of water in gas hydrate dissociation[J].The Journal of Physical Chemistry B, 2004, 108(18):5747-5755. doi: 10.1021/jp0362584

    CrossRef Google Scholar

    [63] Komai T, Kang S P, Yoon J H, Yamamoto Y, Kawamura T, Ohtake M.In situ Raman spectroscopy investigation of the dissociation of methane hydrate at temperatures just below the ice point[J].The Journal of Physical Chemistry B, 2004, 108(23):8062-8068. doi: 10.1021/jp0310955

    CrossRef Google Scholar

    [64] Takeya S, Uchida T, Nagao J, Ohmura R, Shimada W, Kamata Y, Ebinuma T, Narita H.Particle size effect of CH4 hydrate for self-preservation[J].Chemical Engineering Science, 2005, 60(5):1383-1387. doi: 10.1016/j.ces.2004.10.011

    CrossRef Google Scholar

    [65] Gutt C, Asmussen B, Press W, Merkl C, Casalta H, Greinert J, Bohrmann G, Tse J S, H ller A.Quantum rotations in natural methane-clathrates from the Pacific sea-floor[J].EPL (Europhysics Letters), 1999, 48(3):269. doi: 10.1209/epl/i1999-00476-x

    CrossRef Google Scholar

    [66] Tulk C A, Ratcliffe C I, Ripmeester J A.Chemical and physical analysis of natural gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well[J].Bulletin-Geological Survey of Canada, 1999:251-262.

    Google Scholar

    [67] Yousuf M, Qadri S B, Knies D L, Grabowski K S, Coffin R B, Pohlman J W.Novel results on structural investigations of natural minerals of clathrate hydrates[J].Applied Physics A, 2004, 78(6):925-939. doi: 10.1007/s00339-003-2091-y

    CrossRef Google Scholar

    [68] Chazallon B, Focsa C, Charlou J L, Bourry C, Donval J.A comparative Raman spectroscopic study of natural gas hydrates collected at different geological sites[J].Chemical Geology, 2007, 244(1):175-185.

    Google Scholar

    [69] Kim D Y, Uhm T W, Lee H, Lee Y J, Ryu B J, Kimet J H.Compositional and structural identification of natural gas hydrates collected at Site 1249 on Ocean Drilling Program Leg 204[J].Korean Journal of Chemical Engineering, 2005, 22(4):569-572. doi: 10.1007/BF02706645

    CrossRef Google Scholar

    [70] Ripmeester J A, Lu H, Moudrakovski I L, Dutrisac R, Wilson L D, Wright F, Dallimore S R.Structure and composition of gas hydrate in sediment recovered from the JAPEX/JNOC/GSC et al.Mallik 5L-38 gas hydrate production research well, determined by X-ray diffraction and Raman and solid-state nuclear magnetic resonance spectroscopy[J].Bulletin-Geological Survey of Canada, 2005, 585:106.

    Google Scholar

    [71] Udachin K A, Lu H, Enright G D, Ratcliffe C I, Ripmeester J A, Chapman N R, Riedel M, Spence G.Single crystals of naturally occurring gas hydrates: The structures of methane and mixed hydrocarbon hydrates[J].Angewandte Chemie International Edition, 2007, 46(43):8220-8222. doi: 10.1002/(ISSN)1521-3773

    CrossRef Google Scholar

    [72] Kida M, Hachikubo A, Sakagami H, Minami H, Krylov A, Yamashita S, Takahashi N, Shoji H, Khlystov O, Poort J, Narita H.Natural gas hydrates with locally different cage occupancies and hydration numbers in Lake Baikal[J].Geochemistry, Geophysics, Geosystems, 2009, 10(5):1-8.

    Google Scholar

    [73] Khlystov O, Batist M D, Shoji H, Hachikubo A, Nishio S, Naudts L, Poort J, Khabuev A, Belousov O, Manakov A.Gas hydrate of Lake Baikal: Discovery and varieties[J].Journal of Asian Earth Sciences, 2013, 62:162-166. doi: 10.1016/j.jseaes.2012.03.009

    CrossRef Google Scholar

    [74] Klapp S A, Bohrmann G, Kuhs W F, Murshed M M, Pape T, Klein H, Techmer K S, Heeschena K U, Abegg F.Microstructures of structure Ⅰ and Ⅱ gas hydrates from the Gulf of Mexico[J].Marine and Petroleum Geology, 2010, 27(1):116-125. doi: 10.1016/j.marpetgeo.2009.03.004

    CrossRef Google Scholar

    [75] Klapp S A, Murshed M M, Pape T, Klein H, Bohrmann G, Brewer P G, Kuhs W F.Mixed gas hydrate structures at the Chapopote Knoll, southern Gulf of Mexico[J].Earth and Planetary Science Letters, 2010, 299(1):207-217.

    Google Scholar

    [76] Kida M, Jin Y, Watanabe M,Konno Y, Yoneda J, Egawa K, Ito T, Nakatsuka Y, Suzuki K, Nagao J.Characteristics of hydrate-bound gases from the Eastern Nankai Trough [C]//AGU Fall Meeting Abstracts San Francisc: The Smithsonian/NASA Astrophysics Data System, 2013:1605.

    Google Scholar

    [77] Miyakawa A, Saito S, Yamada Y, Tomaru H, Kinoshita M, Tsuji T.Gas hydrate saturation at Site C0002, IODP Expeditions 314 and 315, in the Kumano Basin, Nankai trough[J].Island Arc, 2014.Advance Article. DOI:10.1111/iar.12064.

    CrossRef Google Scholar

    [78] Lu H, Lorenson T D, Moudrakovski I L, Ripmeester J A, Collett T S, Hunter R B, Ratcliffe C I.The characteristics of gas hydrates recovered from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope[J].Marine and Petroleum Geology, 2011, 28(2):411-418. doi: 10.1016/j.marpetgeo.2010.01.002

    CrossRef Google Scholar

    [79] Lu H, Seo Y, Lee J, Moudrakovski I,Ripmeester J A, Chapman N R, Coffin R B, Gardner G, Pohlman J.Complex gas hydrate from the Cascadia margin[J].Nature, 2007, 445(7125):303-306. doi: 10.1038/nature05463

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(2784) PDF downloads(27) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint