Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2013 Vol. 32, No. 5
Article Contents

Ling-hao ZHAO, Xiu-cjun ZHAN, Ming-yue HU, Dong-yang SUN, Chen-zi FAN, Ji-hai YUAN, Li-jun KUAI, Wen-jun QU. Feasibility Study of Synthesizing PGE-Bearing Sulfide Reference Material by Remelted Nickel Sulfide Fire Assay Button[J]. Rock and Mineral Analysis, 2013, 32(5): 694-701.
Citation: Ling-hao ZHAO, Xiu-cjun ZHAN, Ming-yue HU, Dong-yang SUN, Chen-zi FAN, Ji-hai YUAN, Li-jun KUAI, Wen-jun QU. Feasibility Study of Synthesizing PGE-Bearing Sulfide Reference Material by Remelted Nickel Sulfide Fire Assay Button[J]. Rock and Mineral Analysis, 2013, 32(5): 694-701.

Feasibility Study of Synthesizing PGE-Bearing Sulfide Reference Material by Remelted Nickel Sulfide Fire Assay Button

  • Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) is suited to analyze the abundances and spatial distributions of trace elements in sulfide. However, the spread use of the technology on micro area analysis has been hampered by the different characteristics of sulfides from silicates and oxides and the lack of sulfide reference material, especially PGE-bearing reference material. In this study, a PGE-bearing sulfide (SRMD-1) is synthesized by remelted nickel sulfide fire assay button in AN evacuated quartz tube. The examination by BSE imaging revealed that the nickel button SRMD-1 was completely of monosulfide composition. Homogeneity testing by LA-ICP-MS shows that the RSDs of elements, such as S, Ni, Cr, Co, Cu, Pb, Sb, Cd, Bi, are less than 10%. The data suggest the homogeneous distribution of these elements inside SRMD-1, but elements Mn, Zn, Sn, Tl are not as homogeneous with relatively larger RSDs. Elements Ag, Au and Pt are homogeneous inside SRMD-1, but RSDs of other noble metal elements are relatively larger according to low element content, instrument fluctuations or mass spectrometry interference. The homogeneity of the nickel button will be improved by increasing the content for the noble metal elements and lowering the quenching temperature for the molten samples. During the analysis of the nickel sulfide fire assay button, the spectral interferences in light PGEs (Ru, Rh and Pd) by argides is serious, and must be corrected, while the interferences to Os, Ir, Pt and Au can be ignored. Compared to the button which is not remelted, the homogeneity of the elements improved significantly. According to the work documented here, it is possible to synthesized PGE-bearing sulfide reference material for LA-ICP-MS by remelted nickel sulfide fire assay button.
  • 加载中
  • [1] Axelsson M D, Rodushkin I. Determination of major and trace elements in sphalerite using laser ablation double focusing sector field ICP-MS [J].Journal of Geochemical Exploration, 2001,72(2):81-89. doi: 10.1016/S0375-6742(00)00166-7

    CrossRef Google Scholar

    [2] Houghton J, Shanks W, Seyfried W. Massive sulfide deposition and trace element remobilization in the Middle Valley sediment-hosted hydrothermal system, northern Juan de Fuca Rdge [J].Geochimica et Cosmochimica Acta, 2004,68(13):2863-2873. doi: 10.1016/j.gca.2003.12.023

    CrossRef Google Scholar

    [3] Cook N J, Ciobanu C L, Pring A, Skinner W, Shimizu M, Danyushevsky L, Saini-Eidukat B, Melcher F. Trace and minor elements in sphalerite:A LA-ICPMS study [J].Geochimica et Cosmochimica Acta, 2009,73(16): 4761-4791. doi: 10.1016/j.gca.2009.05.045

    CrossRef Google Scholar

    [4] 周涛发,张乐骏,袁峰,范裕, Cook D R. 安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约[J].地学前缘, 2010,17(2):306-319.

    Google Scholar

    [5] Piña R, Gervilla F, Barnes S J, Ortega L, Lunar R. Distribution of platinum-group and chalcophile elements in the Aguablanca Ni-Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study [J].Chemical Geology, 2012,302: 61-75.

    Google Scholar

    [6] Bockrath C, Ballhaus C, Holzheid A. Fractionation of the platinum-group elements during mantle melting [J].Science, 2004,305(5692): 1951-1953. doi: 10.1126/science.1100160

    CrossRef Google Scholar

    [7] Lorand J P, Luguet A, Alard O, Bezos A, Meisel T. Abundance and distribution of platinum-group elements in orogenic lherzolites; a case study in a Fontete Rouge lherzolite (French Pyrénées) [J].Chemical Geology, 2008,248(3): 174-194.

    Google Scholar

    [8] Lorand J P, Luguet A, Alard O. Platinum-group element systematics and petrogenetic processing of the continental upper mantle: A review [J].Lithos, 2013,164-167: 2-21. doi: 10.1016/j.lithos.2012.08.017

    CrossRef Google Scholar

    [9] Alard O. Nonchondritic distribution of the highly sider-ophile elements in mantle sulfides [J].Nature, 2000,407: 891-894. doi: 10.1038/35038049

    CrossRef Google Scholar

    [10] McDonald I. Development of sulphide standards for the in-situ analysis of platinum-group elements by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS)[C]//10th Intern Platinum Symp, 2005: 468-471.

    Google Scholar

    [11] Jarvis K E, Williams J G, Parry S J, Bertalan E. Quantitative determination of the platinum-group elements and gold using NiS fire assay with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS ) [J].Chemical Geology, 1995,124(1 2): 37-46.

    Google Scholar

    [12] Norman M, Robinson P, Clark D. Major-and trace-element analysis of sulfide ores by laser-ablation ICP-MS, solution ICP-MS, and XRF: New data on international materials [J].The Canadian Mineralogist, 2003,41: 293-305. doi: 10.2113/gscanmin.41.2.293

    CrossRef Google Scholar

    [13] Barnes S J, Cox R A, Zientek M L. Platinum-group element, gold, silver and base metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril′sk, Russia [J].Contributions to Mineralogy and Petrology, 2006,152(2): 187-200. doi: 10.1007/s00410-006-0100-9

    CrossRef Google Scholar

    [14] Godel B, Barnes S J. Platinum-group elements in sulfide minerals and the whole rocks of the J-M Reef (Stillwater Complex): Implication for the formation of the reef [J].Chemical Geology, 2008(248): 272-294.

    Google Scholar

    [15] Wilson S A, Ridley W I, Koenig A E. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique [J].Journal of Analytical Atomic Spectrometry, 2002,17(4): 406-409. doi: 10.1039/B108787H

    CrossRef Google Scholar

    [16] Wohlgemuth-Ueberwasser C C, Ballhaus C, Berndt J, Stotternée P V, Meisel T. Synthesis of PGE sulfide standards for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) [J].Contributions to Mineralogy and Petrology, 2007,154(5): 607-617. doi: 10.1007/s00410-007-0212-x

    CrossRef Google Scholar

    [17] 袁继海,詹秀春,范晨子,赵令浩,孙冬阳,贾泽荣,胡明月,蒯丽君. 玻璃标样结合硫内标归一定量技术在激光剥蚀-等离子体质谱分析硫化物矿物中的应用[J].分析化学, 2012,40(2): 201-207.

    Google Scholar

    [18] 袁继海,詹秀春,樊兴涛,胡明月. 硫化物矿物中痕量元素的激光剥蚀-电感耦合等离子体质谱微区分析进展 [J].岩矿测试, 2011,30(2): 121-130.

    Google Scholar

    [19] Perkins W T, Pearce N J G, Westgate J A. The development of laser ablation ICP-MS and calibration strategies: Examples from the analysis of trace elements in volcanic glass shards and sulfide minerals [J].Geostandards Newsletter, 1997,21: 175-190. doi: 10.1111/ggr.1997.21.issue-2

    CrossRef Google Scholar

    [20] Figueiredo A M, Enzweiler J, Sarkis J E, Jorge A P, Shibuya E. NAA and UV laser ablation ICP-MS for platinum group elements and gold determination in NiS fire assay buttons: A comparison between two methods [J].Journal of Radioanalytical and Nuclear Chemistry, 2000,244(3): 623-625. doi: 10.1023/A:1006725618998

    CrossRef Google Scholar

    [21] Gros M, Lorand J P, Luguet A. Analysis of platinum group elements and gold in geological materials using NiS fire assay and Te coprecipitation; the NiS dissolution step revisited [J]. Chemical Geology, 2002,185(3): 179-190.

    Google Scholar

    [22] Sylvester P, Cabri L, Tubrett M, McMahon G, Laflamme J, Peregoedova A. Synthesis and evaluation of a fused pyrrhotite standard reference material for platinum group element and gold analysis by laser ablation-ICPMS[C]//10th International Platinum Symposium. Finland: Geological Survey of Finland, 2005: 16-20.

    Google Scholar

    [23] Wang X, Zeng Z, Yin X, Wang X. Study on the constituents of nickel sulfide assay button [J].Precious Metals, 2007,28(4): 45-49.

    Google Scholar

    [24] Q/GD 008—2002,岩石、土壤、水系沉积物中铂族元素的锍镍试金-电感耦合等离子体质谱(ICP-MS)法测定[S].

    Google Scholar

    [25] Sylvester P. A practical guide to platinumgroup element analysis of sulphides by laser ablation ICPMS[M].Toronto: Mineralogical Association of Canada, 2001: 203-211.

    Google Scholar

    [26] Shibuya E K, Sarkis J E S, Enzweiler J, Jorge A P S, Figueiredo A M G. Determination of platinum group elements and gold in geological materials using an ultraviolet laser ablation high-resolution inductively coupled plasma mass spectrometric technique [J].Journal of Analytical Atomic Spectrometry,1998,13(9): 941-944. doi: 10.1039/a801477i

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(2)

Article Metrics

Article views(1210) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint