Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2013 Vol. 32, No. 5
Article Contents

He-hai CHEN, De-fu RONG, Ran-ran FU, Qing YU, Hai-ping LIAO, Chun-sheng REN, Hui-jun BAO. Determination of Fifteen Rare-earth Elements in Iron Ores Using Inductively Coupled Plasma Mass Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2013, 32(5): 702-708.
Citation: He-hai CHEN, De-fu RONG, Ran-ran FU, Qing YU, Hai-ping LIAO, Chun-sheng REN, Hui-jun BAO. Determination of Fifteen Rare-earth Elements in Iron Ores Using Inductively Coupled Plasma Mass Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2013, 32(5): 702-708.

Determination of Fifteen Rare-earth Elements in Iron Ores Using Inductively Coupled Plasma Mass Spectrometry with Microwave Digestion

  • Matrix interference and co-existent elemental interference are the two key factors necessary to obtain accurate analysis results for Rare earth elements (REEs) in geological samples using the traditional methods. Since Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) is widely conducted in the field of trace element analysis, accurate results of REEs are obtained under optimized conditions. This method was established using ICP-MS to determine 15 REEs and is detailed in this paper. The samples were digested in sealed containers with HCl, HNO3 and HF at high temperature. The solutions were set into a constant volume. Internal standard solutions of 103Rh, 115In and 185Re were on-line loaded into the sample solution during the measurement. The recovery rates are 95%-104% and the RSDs are less than 3.5%. REEs in 24 representative ore samples from 12 countries were analyzed and are reported in this paper. The results show that importing iron ores are LREEs enrichment type. Currently, imported fine ores are mostly combined with different iron ores from multi productive areas. This provides a technical reference for the comprehensive utilization of rare earth elements in iron ore and pollution control and also provides valuable information on the origin of the iron ore.
  • 加载中
  • [1] Castor S B, Hedrick J B. Rare Earth Elements [M]//Industrial Minerals and Rocks. New York: Elsevier Press, 2006: 769-792.

    Google Scholar

    [2] 闫升好,张招崇,王义天,陈柏林,周刚,何立新.新疆阿尔泰山南缘乔夏哈拉式铁铜矿床稀土元素地球化学特征及其地质意义[J].矿床地质,2005,24(1): 25-33.

    Google Scholar

    [3] 潘景瑜.铁矿中微量稀土元素总量的分离与测定[J].地球化学,1983(1): 98-102.

    Google Scholar

    [4] 何久康,苏淑琴,彭妹丽.DBC-CPA显色树脂相光度法测定铁矿中稀土总量方法研究[J].内蒙古大学学报: 自然科学版,1989,20(1): 87-90.

    Google Scholar

    [5] 武晓丽.三氯偶氮氯膦树脂相光度法测定铁矿中的稀土总量[J].分析化学,2002,30(4): 506.

    Google Scholar

    [6] GBT 6730.24—2006,铁矿石 稀土总量的测定;萃取分离-偶氮氯膦mA分光光度法[S].

    Google Scholar

    [7] 杨枝,李伯平,罗明标,宋金如,刘维.微色谱柱分离-光度法测定高稀土铁矿石中的微量钍[J].分析试验室,2008,27(3): 52-55.

    Google Scholar

    [8] GB/T 6730.25—2006,铁矿石;稀土总量的测定;草酸盐重量法[S].

    Google Scholar

    [9] 杨瑞瑛,贾秀琴,张海珠.中子活化法研究中祁连清水沟蛇绿岩中稀土元素的地球化学特征[J].同位素,2006,19(2): 65-69.

    Google Scholar

    [10] Brunfelt A O, Roelandts I, Steinnes E. Determination of rubidium, caesium, barium and eight rare earth elements in ultramafic rocks by neutron-activation analysis[J].Analyst, 1974, 99: 277-284. doi: 10.1039/an9749900277

    CrossRef Google Scholar

    [11] 康惟道,孙素卿.原子吸收光谱法分析稀土元素的进展[J].光谱实验室,1991,8(4/5): 1-5.

    Google Scholar

    [12] Djingova R, Ivanova J.Determination of rare earth elements in soils and sediments by inductively coupled plasma atomic emission spectrometry after cation-exchange separation [J].Talanta, 2002, 57: 821-829. doi: 10.1016/S0039-9140(02)00126-1

    CrossRef Google Scholar

    [13] 田晓娅,张宏志.ICP-AES法同时测定岩石、矿物、土壤等样品中十五种稀土元素的方法研究[J].光谱实验室,1996,13(5): 57-63.

    Google Scholar

    [14] Robinson P, Higgins N C, Jenner G A. Determination of rare-earth elements, yttrium and scandium in rocks by anion exchange-X-ray fluorescence technique [J].Chemical Geology, 1986, 55(1-2): 121-137. doi: 10.1016/0009-2541(86)90132-4

    CrossRef Google Scholar

    [15] Zhang J, Nozaki Y. Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean [J].Geochimica et Cosmochimica Acta, 1996, 60(23): 4631-4644. doi: 10.1016/S0016-7037(96)00276-1

    CrossRef Google Scholar

    [16] 王初丹,侯明.电感耦合等离子体质谱法测定地质样品中的稀土、钍元素[J].桂林理工大学学报,2011,31(3): 454-456.

    Google Scholar

    [17] 常帼雄,李先锋,孙元方.电感耦合等离子体质谱法测定15种稀土元素浅议[J].内蒙古水利,2011(3):176-178.

    Google Scholar

    [18] 赵伟,张春法,郑建业.电感耦合等离子体质谱法测定地质样品中稀土元素[J].山东国土资源,2011,27(10): 49-51. doi: 10.3969/j.issn.1672-6979.2011.10.015

    CrossRef Google Scholar

    [19] GB/T 6682—2008,分析实验室用水规格和试验方法[S].

    Google Scholar

    [20] 陈贺海,鲍惠君,付冉冉,应海松,芦春梅,金献忠,肖达辉.微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅[J].岩矿测试,2012,31(2): 234-240.

    Google Scholar

    [21] Houk R S.Mass spectrometry of inductively coupled plasma [J].Analytical Chemistry, 1986, 58(1): 97A-105A. doi: 10.1021/ac00292a003

    CrossRef Google Scholar

    [22] 李冰,尹明.电感耦合等离子体质谱法测定生物样中的超痕量稀土时氧化物干扰的研究[J].岩矿测试,2000,19(2): 101-105.

    Google Scholar

    [23] Longerich H P, Fryer B J, Strong D F, Kantipuly C J. Effects of operating conditions on the determination of the rare earth elements by inductively coupled plasma-mass spectrometry (ICP-MS) [J].Spectrochimica Acta Part B: Atomic Spectroscopy,1987,42(1-2): 75-92. doi: 10.1016/0584-8547(87)80051-4

    CrossRef Google Scholar

    [24] 任春生,付冉冉,余清.铁矿石检验结果的数据处理[M].北京:冶金工业出版社,2009: 98-104.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(7)

Article Metrics

Article views(606) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint