Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2013 Vol. 32, No. 1
Article Contents

Chao ZHANG, Fen LIU, Fu-quan YANG. A Discussion on Genetic Mechanism of the Kuerqis Iron Deposit in Fuyun County, Xinjiang[J]. Rock and Mineral Analysis, 2013, 32(1): 157-165.
Citation: Chao ZHANG, Fen LIU, Fu-quan YANG. A Discussion on Genetic Mechanism of the Kuerqis Iron Deposit in Fuyun County, Xinjiang[J]. Rock and Mineral Analysis, 2013, 32(1): 157-165.

A Discussion on Genetic Mechanism of the Kuerqis Iron Deposit in Fuyun County, Xinjiang

More Information
  • The large iron deposits in the southern margin of Altay had been studied systematically, but researches on some small Fe-rich type such as Kuerqis iron deposit are still obviously insufficient. In this paper, a study of the chronology and genetic mechanism to supply basic information for regional metallogeny and mineral assessment is documented. The Kuerqis iron deposit is located in the Erqis tectonic belt in the southern margin of Altay. The field investigation suggests that the deposit is dominantly related to hydrothermal activity of granitic porphyry besides the volcanic sedimentary genesis, meanwhile the iron deposit was destroyed by monzonitic granite. The ages of two granite intrusions in the deposit area and S isotope composition of pyrites in ore were determined by Laser Ablation-Multicollector Inductively Coupled Plasma-Mass Spectrometry (LA-MC-ICP-MS) and MAT 251 EM Mass Spectrograph. The 206Pb/238U ages of 18 data points of zircons in granitic porphyry concentrated on the concordia line range from 273 Ma to 282.6 Ma and the weighted average age is (278.7±0.94) Ma with MSDW=1.6. The 206Pb/238U ages of 12 data points of zircons in monzonitic granite concentrated on the concordia line range from 271.8 Ma to 276.8 Ma and the weighted average age is (274.1±1.1) Ma with MSDW=0.47. δ34S in pyrites varies from -7.2‰ to 0.7‰ and most are negative and near 0. The characteristic of δ34S perhaps reflects the significant exchange of S isotope between magma from deep source and wall-rocks or the earlier sedimentary iron deposit during ascending magma. The mineralization prominently occurred in the hydrothermal period of granitic porphyry. Combined with former studies, it suggested that two granite intrusions in the deposit area intruded in a plate extension environment during the early-Permian when granite intrusions developed widely in the southern margin of Altay. Moreover, the extensive mineralization of iron and other elements perhaps occurred in this granitic event.
  • 加载中
  • [1] 赵一鸣.中国铁矿资源现状、保证程度和对策[J].地质论评, 2004, 50(4): 396-417.

    Google Scholar

    [2] 张泾生.我国铁矿资源开发利用现状及发展趋势[J].钢铁, 2007, 42(2): 1-6. doi: 10.7513/j.issn.1004-7638.2007.02.001

    CrossRef Google Scholar

    [3] 焦玉书,周伟.世界铁矿资源开发利用和我国进口铁矿石的发展态势(续) [J].中国冶金, 2004, 85(12): 15-18. doi: 10.3969/j.issn.1006-9356.2004.12.004

    CrossRef Google Scholar

    [4] 何国琦, 成守德, 徐新, 李锦轶, 郝杰.中国新疆及邻区大地构造图(1∶2500000)说明书[M].北京:地质出版社, 2004: 1-65.

    Google Scholar

    [5] 侯可军,李延河,田有荣.LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质, 2009, 28(4): 481-492.

    Google Scholar

    [6] Nasdala L, Hofmeister W, Norberg N, Mattinson J M, Corfu F, Dor W, Kamo S L, Kennedy A K, Kronz A, Reiners P W, Frei D, Kosler J, Wan Y, Götze J, Hager T, Kröner A, Valley J. Zircon M257—A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon [J].Geostandards and Geoanalytical Research, 2008, 32: 247-265. doi: 10.1111/ggr.2008.32.issue-3

    CrossRef Google Scholar

    [7] Ludwig K R.User′s Manual for Isoplot 3.0: A Geochro-nological Toolkit for Microsoft Excel[M].Berkeley: Berkeley Geochronology Center Special Publication, 2003: 1-71.

    Google Scholar

    [8] Slama J, Kosler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J.Plesovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis[J].Chemical Geology, 2008, 249: 1-35. doi: 10.1016/j.chemgeo.2007.11.005

    CrossRef Google Scholar

    [9] Claesson S, Vetrin V, Bayanova T, Downes H.U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia: A record of geological evolution from the Archaean to the Palaeozoic[J].Lithos, 2000, 51(1-2): 95-108. doi: 10.1016/S0024-4937(99)00076-6

    CrossRef Google Scholar

    [10] Belousova E A, Griffin W L, O′Reilly S Y, Fisher N I.Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type[J].Journal of Geochemical Exploration, 2002, 76: 45-69. doi: 10.1016/S0375-6742(02)00204-2

    CrossRef Google Scholar

    [11] 李锦轶.试论中国新疆准噶尔山系古生代板块构造演化[M].北京: 北京科学技术出版社, 1991: 92-108.

    Google Scholar

    [12] 何国琦, 李茂松, 刘德权.中国新疆古生代地壳演化及成矿[M].乌鲁木齐: 新疆人民出版社, 香港: 香港文化教育出版社, 1994: 1-437.

    Google Scholar

    [13] 童英, 王涛, Kovach V P, 洪大卫, 韩宝福.阿尔泰中蒙边界塔克什肯口岸后造山富碱侵入岩体的形成时代、成因及其地壳生长意义[J].岩石学报, 2006, 22(5): 1267-1278.

    Google Scholar

    [14] 刘崴国,韩静波,薛晓峰,郭伟伟.阿尔泰山南缘二叠纪地壳伸展减薄——来自侵入岩的证据[J].新疆地质, 2011, 29(3): 270-274.

    Google Scholar

    [15] 韩宝福,季建清,宋彪,陈立辉,李宗怀.新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J].科学通报, 2004, 49(22): 2324-2328. doi: 10.3321/j.issn:0023-074X.2004.22.012

    CrossRef Google Scholar

    [16] 周刚, 张招崇, 王新昆, 王祥, 罗世宾, 何斌, 张小林.新疆玛因鄂博断裂带中花岗质糜棱岩锆石U-Pb SHRIMP和黑云母40Ar-39Ar年龄及意义[J].地质学报, 2007, 81(3): 359-369.

    Google Scholar

    [17] 周刚, 张招崇, 罗世宾, 何斌, 王祥, 应立娟, 赵华, 李爱红, 贺永康.新疆阿尔泰山南缘玛因鄂博高温型强过铝花岗岩年龄、地球化学特征及其地质意义[J].岩石学报, 2007, 23(8): 1909-1920.

    Google Scholar

    [18] 童英, 洪大卫, 王涛, 王式洸, 韩宝福.阿尔泰造山带南缘富蕴后造山线形花岗岩体锆石U-Pb年龄及其地质意义[J].岩石矿物学杂志, 2006, 25(2): 85-89.

    Google Scholar

    [19] 刘锋, 张超, 杨富全.新疆阿尔泰南缘加尔巴斯套铁矿床成矿时代及成矿作用研究[J].矿床地质, 2012,31(6): 1277-1288.

    Google Scholar

    [20] 王涛, 洪大卫, 童英, 韩宝福, 石玉若.中国阿尔泰造山带后造山喇嘛昭花岗岩体锆石SHRIMP年龄、成因及陆壳垂向生长意义[J].岩石学报, 2005, 21(3): 640-650.

    Google Scholar

    [21] 李香仁, 刘锋, 杨富全.新疆阿尔泰克因布拉克铜锌矿区二云母正长花岗岩成岩时代及其地质意义探讨[J].新疆地质, 2012, 30(1):5-11.

    Google Scholar

    [22] 肖序常,汤耀庆,李锦轶,赵民,冯益民,朱宝清.古中亚复合巨型缝合带南缘构造演化[M]//肖序常,汤耀庆,主编.古中亚复合巨型缝合带南缘构造演化.北京:北京科学技术出版社, 1991: l-24.

    Google Scholar

    [23] 于学元, 梅厚均, 杨学昌, 王俊达.额尔齐斯火山岩及其构造演化[M]//涂光炽,主编.新疆北部固体地球科学新进展.北京:科学出版社, 1993: 185-198.

    Google Scholar

    [24] 成守德, 王元龙.新疆大地构造演化基本特征[J].新疆地质, 1998, 16(2): 98-107.

    Google Scholar

    [25] 李华芹,谢才富,常海亮,蔡红,朱家平,周肃.新疆北部主要有色金属矿床成矿期同位素年代学研究[M].北京:地质出版社, 1998: 202-206.

    Google Scholar

    [26] Han B F, Ji J Q, Song B, Chen L H, Li Z H.SHRIMP zircon U-Pb ages of Kalatongke No.1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications [J].Chinese Science Bulletin, 2004, 49(22): 2424-2429.

    Google Scholar

    [27] Chen B, Jahn B.Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence [J].Journal of Asian Earth Sciences, 2004, 23: 691-703. doi: 10.1016/S1367-9120(03)00118-4

    CrossRef Google Scholar

    [28] Chen B, Arakawa Y. Elemental and Nd-Sr isotopic geo-chemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth[J]. Geochimica et Cosmochimica Acta, 2005, 69(5): 1307-1320. doi: 10.1016/j.gca.2004.09.019

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(1324) PDF downloads(2) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint