Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2019 Vol. 38, No. 2
Article Contents

Mao-guo AN, Qing-ling ZHAO, Xian-feng TAN, Yong-gang WANG, Qing-cai LI. Research on the Effect of Chemical Reduction-Stabilization Combined Remediation of Cr-contaminated Soil[J]. Rock and Mineral Analysis, 2019, 38(2): 204-211. doi: 10.15898/j.cnki.11-2131/td.201806040068
Citation: Mao-guo AN, Qing-ling ZHAO, Xian-feng TAN, Yong-gang WANG, Qing-cai LI. Research on the Effect of Chemical Reduction-Stabilization Combined Remediation of Cr-contaminated Soil[J]. Rock and Mineral Analysis, 2019, 38(2): 204-211. doi: 10.15898/j.cnki.11-2131/td.201806040068

Research on the Effect of Chemical Reduction-Stabilization Combined Remediation of Cr-contaminated Soil

More Information
  • BACKGROUNDCr(Ⅵ) is one of the 47 internationally recognized most dangerous wastes. Study on the remedy of Cr-contaminated soil is of great significance for risk control of contaminated soil. OBJECTIVESTo build a reliable method for Cr-contaminated soil, and to screen the optimal remediation conditions. To propose a chemical reduction-stabilization combined method for remediation of Cr(Ⅵ) contaminated soil and screen the remediation conditions including choice of reductant, soil/liquid ratio and stabilizer. METHODSSoil from a typical chromium contaminated site in Jinan is used as the research object, and the idea of 'chemical reduction + solidification stability' is suggested, which is aimed at the types of repair agent, dosage ratio, reaction time, reduction efficiency, repair cost and environmental effect. The optimal conditions for the repair process were determined and the remediation effects of contaminated soil were evaluated. RESULTSThe results demonstrated that the optimal parameter for Cr(Ⅵ) treatment was using ferrous chloride as the reductant and treating for 2 days, controlling the addition amount of the reductant at 5 times of its stoichiometric need. Calcium magnesium phosphate was used as the stabilizer and its addition amount was controlled as 10%. After remediation, the bioavailable efficients of Cr in the soil reduced from 0.4398 to 0.0017. The results showed that contents of Cr(Ⅵ) in the treated soil were 0.315-0.501mg/kg, and 99.5% of Cr(Ⅵ) was reduced. CONCLUSIONSThe remedied soil satisfies the risk screen number for residual land. This result could provide reference and theoretical basis for soil remediation and decision-making.
  • 加载中
  • [1] Tardif S, Cipullo S, SøH U, et al. Factors governing the solid phase distribution of Cr, Cu and As in contaminated soil after 40 years of ageing[J].Science of the Total Environment, 2019, 652:744-754. doi: 10.1016/j.scitotenv.2018.10.244

    CrossRef Google Scholar

    [2] 田衎, 杨珺, 孙自杰, 等.矿区污染场地土壤重金属元素分析标准样品的研制[J].岩矿测试, 2017, 36(1):82-88.

    Google Scholar

    Tian K, Yang J, Sun Z J, et al.Preparation of soil certified reference materials for heavy metals in contaminated sites[J].Rock and Mineral Analysis, 2017, 36(1):82-88.

    Google Scholar

    [3] Lü J S, Wang Y M.Multi-scale analysis of heavy metals sources in soils of Jiangsu Coast, Eastern China[J].Chemosphere, 2018, 212:964-973. doi: 10.1016/j.chemosphere.2018.08.155

    CrossRef Google Scholar

    [4] Ma R, Zhou X N, Shi J S.Heavy metal contamination and health risk assessment in critical zone of Luan River catchment in the North China Plain[J].Geochemistry:Exploration, Environment, Analysis, 2018, 18:47-57. doi: 10.1144/geochem2017-010

    CrossRef Google Scholar

    [5] Wang Q, Liu J F, Chen Z, et al.A causation-based method developed for an integrated risk assessment of heavy metals in soil[J].Science of the Total Environment, 2018, 642:1396-1405. doi: 10.1016/j.scitotenv.2018.06.118

    CrossRef Google Scholar

    [6] Diao Z H, Du J J, Jiang D, et al. Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron:Coexistence effect and mechanism[J].Science of the Total Environment, 2018, 642:505-515. doi: 10.1016/j.scitotenv.2018.06.093

    CrossRef Google Scholar

    [7] 邓日欣, 罗伟嘉, 韩奕彤, 等.膨润土负载纳米铁镍同步修复地下水中三氯乙烯和六价铬复合污染[J].岩矿测试, 2018, 37(5):541-548.

    Google Scholar

    Deng R X, Luo W J, Han Y T, et al.Simultaneous removal of TCE and Cr(Ⅵ) in groundwater by using bentonite-supported nanoscale Fe/Ni[J].Rock and Mineral Analysis, 2018, 37(5):541-548.

    Google Scholar

    [8] Economou-Eliopoulos M, Megremi I, Vasilatos C.Geochemical constraints on the sources of Cr(Ⅵ) contamination in waters of Messapia (Central Evia) Basin[J].Applied Geochemistry, 2017, 84:13-25. doi: 10.1016/j.apgeochem.2017.05.015

    CrossRef Google Scholar

    [9] Séby F, Vacchina V. Critical assessment of hexavalent chromium species from different solid environmental, industrial and food matrices[J].Trends in Analytical Chemistry, 2018, 104:54-68. doi: 10.1016/j.trac.2017.11.019

    CrossRef Google Scholar

    [10] Clemention M, Shi X L, Zhang Z.Oxidative stress and metabolic reprogramming in Cr(Ⅵ) carcinogenesis[J].Current Opinion in Toxicology, 2018, 8:20-27. doi: 10.1016/j.cotox.2017.11.015

    CrossRef Google Scholar

    [11] Khalid S, Shahid M, Niazi N K, et al.A comparison of technologies for remediation of heavy metal contaminated soils[J].Journal of Geochemical Exploration, 2017, 182:247-268. doi: 10.1016/j.gexplo.2016.11.021

    CrossRef Google Scholar

    [12] 陈保冬, 张莘, 伍松林, 等.丛枝菌根影响土壤-植物系统中重金属迁移转化和累积过程的机制及其生态应用[J].岩矿测试, 2019, 38(1):1-25.

    Google Scholar

    Chen B D, Zhang X, Wu S L, et al.The role of arbuscular mycorrhizal fungi in heavy metal translocation, transformation and accumulation in the soil-plant continuum:Underlying mechanisms and ecological implications[J].Rock and Mineral Analysis, 2019, 38(1):1-25.

    Google Scholar

    [13] Liu L W, Li W, Song W P, et al.Remediation techniques for heavy metal-contaminated soils:Principles and applicability[J].Science of the Total Environment, 2018, 633:206-219. doi: 10.1016/j.scitotenv.2018.03.161

    CrossRef Google Scholar

    [14] Choppala G, Kunhikrishnan A, Seshadri B, et al.Compa-rative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils[J].Journal of Geochemical Exploration, 2018, 184:255-260. doi: 10.1016/j.gexplo.2016.07.012

    CrossRef Google Scholar

    [15] Zhang M T, Yang C H, Zhao M, et al.Immobilization potential of Cr(Ⅵ) in sodium hydroxide activated slag pastes[J].Journal of Hazardous Materials, 2017, 321:281-289. doi: 10.1016/j.jhazmat.2016.09.019

    CrossRef Google Scholar

    [16] Ballesteros S, Rincón J M, Rincón-Mora B, et al.Vitrifi-cation of urban soil contamination by hexavalent chromium[J].Journal of Geochemical Exploration, 2017, 174:132-139. doi: 10.1016/j.gexplo.2016.07.011

    CrossRef Google Scholar

    [17] Wu J N, Zhang J, Xiao C Z.Focus on factors affecting pH, flow of Cr and transformation between Cr(Ⅵ) and Cr(Ⅲ) in the soil with different electrolytes[J].Electrochimica Acta, 2016, 211:652-662. doi: 10.1016/j.electacta.2016.06.048

    CrossRef Google Scholar

    [18] Dhal B, Thatoi H N, Das N N, et al.Chemical and micro-bial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste:A review[J].Journal of Hazardous Materials, 2013, 250-251:272-291.

    Google Scholar

    [19] Jiang B, He H H, Liu Y J, et al.pH-dependent roles of polycarboxylates in electron transfer between Cr(Ⅵ) and weak electron donors[J].Chemosphere, 2018, 197:367-374. doi: 10.1016/j.chemosphere.2018.01.047

    CrossRef Google Scholar

    [20] Li Y Y, Liang J L, Yang Z H, et al.Reduction and immobilization of hexavalent chromium in chromite ore processing residue using amorphous FeS2[J].Science of the Total Environment, 2019, 658:315-323. doi: 10.1016/j.scitotenv.2018.12.042

    CrossRef Google Scholar

    [21] Li D, Ji G Z, Hu J, et al.Remediation strategy and electrochemistry flushing & reduction technology for real Cr(Ⅵ)-contaminated soils[J].Chemical Engineering Journal, 2018, 334:1281-1288. doi: 10.1016/j.cej.2017.11.074

    CrossRef Google Scholar

    [22] Zhang X H, Liu J, Huang H T, et al.Chromium accu-mulation by the hyperaccumulator plant Leersia hexandra Swartz[J].Chemosphere, 2007, 67:1138-1143. doi: 10.1016/j.chemosphere.2006.11.014

    CrossRef Google Scholar

    [23] Bai Y N, Lu Y Z, Shen N, et al.Investigation of Cr(Ⅵ) reduction potential and mechanism by Caldicellulosiruptor saccharolyticus under glucose fermentation condition[J].Journal of Hazardous Materials, 2018, 344:585-592. doi: 10.1016/j.jhazmat.2017.10.059

    CrossRef Google Scholar

    [24] Zhang Q, Amor K, Galer S J G, et al.Variations of stable isotope fractionation during bacterial chromium reduction processes and their implications[J].Chemical Geology, 2018, 481:155-164. doi: 10.1016/j.chemgeo.2018.02.004

    CrossRef Google Scholar

    [25] 赵庆令, 安茂国, 陈洪年, 等.济南市某废弃化工厂区域土壤地球化学特征研究[J].岩矿测试, 2018, 37(2):201-208.

    Google Scholar

    Zhao Q L, An M G, Chen H N, et al.Research on geochemical characteristics of soil in a chemical industrial factory site in Jinan city[J].Rock and Mineral Analysis, 2018, 37(2):201-208.

    Google Scholar

    [26] 李玲, 唐晓声, 李海建.六价铬污染土壤还原稳定修复[J].广东化工, 2016, 43(3):95-96. doi: 10.3969/j.issn.1007-1865.2016.03.049

    CrossRef Google Scholar

    Li L, Tang X S, Li H J.Reduction and stabilization remediation of hexavalent chromium contaminated soil[J]. Guangdong Chemical Industry, 2016, 43(3):95-96. doi: 10.3969/j.issn.1007-1865.2016.03.049

    CrossRef Google Scholar

    [27] 纪柱.含铬的磷酸盐[J].无机盐工业, 2005, 37(8):8-11. doi: 10.3969/j.issn.1006-4990.2005.08.003

    CrossRef Google Scholar

    Ji Z.Chromium:Containing phosphate[J].Inorganic Chemicals Industry, 2005, 37(8):8-11. doi: 10.3969/j.issn.1006-4990.2005.08.003

    CrossRef Google Scholar

    [28] Gomm J R, Schwenzer B, Morse D E.Textured films of chromium phosphate synthesized by low-temperature vapor diffusion catalysis[J].Solid State Sciences, 2007, 9:429-431. doi: 10.1016/j.solidstatesciences.2007.03.012

    CrossRef Google Scholar

    [29] Li Y Y, Cundy A B, Feng J X, et al.Remediation of hexa-valent chromium contamination in chromite ore processing residue by sodium dithionite and sodium phosphate addition and its mechanism[J].Journal of Environmental Management, 2017, 192:100-106.

    Google Scholar

    [30] Markelova E, Couture R M, Parsona C T, et al.Specia-tion dynamics of oxyanion contaminants (As, Sb, Cr) in argillaceous suspensions during oxic-anoxic cycles[J].Applied Geochemistry, 2018, 91:75-88. doi: 10.1016/j.apgeochem.2017.12.012

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(2563) PDF downloads(139) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint