Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2020 Vol. 39, No. 4
Article Contents

Yue WU, Guang-cheng CHI, Xin LIU. Application of X-ray Powder Diffraction Method in Identification and Classification of Leptite[J]. Rock and Mineral Analysis, 2020, 39(4): 546-554. doi: 10.15898/j.cnki.11-2131/td.201908050117
Citation: Yue WU, Guang-cheng CHI, Xin LIU. Application of X-ray Powder Diffraction Method in Identification and Classification of Leptite[J]. Rock and Mineral Analysis, 2020, 39(4): 546-554. doi: 10.15898/j.cnki.11-2131/td.201908050117

Application of X-ray Powder Diffraction Method in Identification and Classification of Leptite

More Information
  • BACKGROUNDThe identification of leptite is usually based on microscopic identification technology, but it is very difficult to distinguish tiny feldspar, quartz, and layered silicate minerals such as chlorite, montmorillonite and mica using a microscope. There could be a large error in the naming of leptite by microscopic identification methods, which will cause errors in geological mapping and original rock recovery, leading to incorrect geological conclusions. The development of X-ray powder diffraction analysis technology has led to its wide use in the study of mineralogy and petrology. OBJECTIVESTo identify tiny minerals that are difficult to distinguish under the microscope by using X-ray powder diffraction technology. METHODSA total of 23 leptite samples were selected. The mineral composition of leptite was detected by X-ray powder diffraction analysis and microscopic rock thin section identification technology. Semi-quantitative X-ray powder diffraction was used to verify the accuracy of the rock slice identification results. RESULTSThe comparison between the identification results of the microscopic rock slices and the X-ray powder diffraction phase analysis results showed that 10 out of 23 samples had the same name. Analyzing the reasons for the difference, it can be found that the advantage of microscopic rock identification was that it can be used to determine rock texture and structure, as well as common mineral components. The advantage of the X-ray powder diffraction method was that it can be used to detect the relative content of tiny quartz and feldspar particles that were difficult to distinguish under the microscope, and can detect tiny layered silicate minerals such as chlorite, montmorillonite and mica, which was effective for detecting minerals with less content and finer particles. CONCLUSIONSOnly by combining the microscopic rock thin identification technology and the X-ray powder diffraction technology can the leptite be named and classified more accurately. The combination of two techniques provides more objective technical data and analytical conclusions for geoscience research.
  • 加载中
  • [1] 何丽, 徐翠, 修迪, 等.将X粉晶射线法、电子探针分析与岩矿鉴定法应用于矿物分析[J].中国锰业, 2016, 34(3):159-163.

    Google Scholar

    He L, Xu C, Xiu D, et al.Discussin on how to apply the X-ray powder diffraction, the electron microprobe analysis and the rock ore appraisal to the rock and mineral analysis reasonably[J].China's Manganese Industry, 2016, 34(3):159-163.

    Google Scholar

    [2] 陈爱清, 江向峰, 李国武, 等.微量样品的X射线粉晶衍射分析研究[J].矿物学报, 2017, 37(1/2):1-6.

    Google Scholar

    Chen A Q, Jiang X F, Li G W, et al.A study on X-ray powder diffraction of micro sample[J].Acta Mineralogica Sinica, 2017, 37(1/2):1-6.

    Google Scholar

    [3] 沈春玉, 储刚.X射线衍射定量相分析新方法[J].分析测试学报, 2003, 22(6):80-82.

    Google Scholar

    Shen C Y, Chu G.A new method for quantitative X-ray diffraction phase analysis[J].Journal of Instrumental Analysis, 2003, 22(6):80-82.

    Google Scholar

    [4] 孙以谏.X射线晶体学对造岩矿物研究的应用[J].资源调查与环境, 2002, 23(3):172-178.

    Google Scholar

    Sun Y J.Application of X-ray crystallography on studying rock-forming mineral[J].Resources Survey & Environment, 2002, 23(3):172-178.

    Google Scholar

    [5] 李杨.X射线粉晶衍射法结合显微镜薄片观测运用于具隐晶质岩石的鉴定[J].中国金属通报, 2018(2):246-247.

    Google Scholar

    Li Y.X-ray powder crystal diffraction method combined with microscopy observation for identification of cryptocrystalline rocks[J].China Metal Bulletin, 2018(2):246-247.

    Google Scholar

    [6] 何丽, 范超, 田颖, 等.X射线粉晶衍射法结合运用于岩矿鉴定的薄弱部分——隐晶质岩石[J].中国锰业, 2017, 35(6):132-135.

    Google Scholar

    He L, Fan C, Tian Y, et al.X-ray powder diffraction to vulnerable part of mineral and rock identification-Cryptocrystalline rocks[J].China's Manganese Industry, 2017, 35(6):132-135.

    Google Scholar

    [7] 胡耀东.光学显微镜鉴定、扫描电镜(能谱)及微区衍射在微量矿物检测中的联合应用[J].云南冶金, 2015, 44(1):63-66.

    Google Scholar

    Hu Y D.The combied application of optical microscope indentification, scanning electron microscope (energy spectrum) and micro mineral detection[J].Yunnan Metallurgy, 2015, 44(1):63-66.

    Google Scholar

    [8] 宋颖.岩石矿物鉴定方法综述[J].化工管理, 2018, 23(8):237-238.

    Google Scholar

    Song Y.Summary of rock mineral identification methods[J].Chemical Enterprise Management, 2018, 23(8):237-238.

    Google Scholar

    [9] 廖冰冰.岩矿鉴定工作现状及其发展趋势分析[J].资源信息与工程, 2018, 33(2):27-28.

    Google Scholar

    Liao B B.Analysis of the status and development trend of rock and mineral identification[J].Resource Information and Engineering, 2018, 33(2):27-28.

    Google Scholar

    [10] 殷悦.浅谈岩石矿物鉴定的方法与应用[J].化工设计通讯, 2017, 43(6):136.

    Google Scholar

    Yin Y.Analysis on the method and application of rock mineral indentification[J].Chemical Engineering Design Communications, 2017, 43(6):136.

    Google Scholar

    [11] 游振东.变质岩电子岩相学初探[J].地质科技情报, 1984(3):11-17.

    Google Scholar

    You Z D.Preliminary study on electronic petrography of metamorphic rocks[J].Geological Science and Technology Information, 1984(3):11-17.

    Google Scholar

    [12] 陈曼云, 金巍, 郑常青.变质岩鉴定手册[M].北京:地质出版社, 2009:69-71.

    Google Scholar

    Chen M Y, Jin W, Zheng C Q.Metamorphic rock identification manual[M].Beijing:Geological Publishing House, 2009:69-71.

    Google Scholar

    [13] He B B.Introduction to two-dimensional X-ray diffraction[J].Powder Diffraction, 2003, 18(2):71-80. doi: 10.1154/1.1577355

    CrossRef Google Scholar

    [14] 廖立兵, 李国武.X射线衍射方法与应用[M].北京:地质出版社, 2008:134-136.

    Google Scholar

    Liao L B, Li G W.X-ray diffraction methods and their application[M].Beijng:Geological Publishing House, 2008:134-136.

    Google Scholar

    [15] 马礼敦.X射线粉晶衍射的新起点——Rietveld全谱拟合[J].物理学进展, 1996, 16(2):251-256.

    Google Scholar

    Ma L D.The new starting point of X-ray powder diffraction-Rietveld whole pattern fitting[J].Progress in Physics, 1996, 16(2):251-256.

    Google Scholar

    [16] 伍月, 刘欣, 张波, 等.X射线粉晶衍射基体清洗法在矿物定量分析中的应用[J].地质与资源, 2017, 26(3):323-328.

    Google Scholar

    Wu Y, Liu X, Zhang B, et al.The application and research of X-ray powder diffraction matrix flushing method in quantitative analysis[J].Geology and Resources, 2017, 26(3):323-328.

    Google Scholar

    [17] 林伟伟, 宋友佳.沉积物中X射线衍射物相定量分析中的两种方法对比研究[J].地球环境学报, 2017, 8(1):83-86.

    Google Scholar

    Lin W W, Song Y J.A comparative study on X-ray diffraction mineral quantitative analysis of two methods in sediments[J].Journal of Earth Enviroment, 2017, 8(1):83-86.

    Google Scholar

    [18] 邱贤荣, 齐砚勇, 唐志强.全谱拟合定量分析石灰石[J].分析科学学报, 2013, 29(1):146-148.

    Google Scholar

    Qiu X R, Qi Y Y, Tang Z Q.Rietveld quantitative analysis of limestone[J].Journal of Analytical Science, 2013, 29(1):146-148.

    Google Scholar

    [19] 冉敬, 郭创锋, 杜谷, 等.X射线衍射全谱拟合法分析蓝晶石的矿物含量[J].岩矿测试, 2019, 38(6):660-667.

    Google Scholar

    Ran J, Guo C F, Du G, et al.Quantitative analysis of mineral composition of kyanite by X-ray diffraction with Rietveld refinement method[J].Rock and Mineral Analysis, 2019, 38(6):660-667.

    Google Scholar

    [20] Gualtieri M L, Romagnoli M, Miselli P, et al.Full quantitative phase analysis of hydrated lime using the Rietveld method[J].Cement & Concrete Research, 2012, 42(9):1273-1279.

    Google Scholar

    [21] Woodruff L, Cannon W F, Smith D B, et al.The distribution of selected elements and minerals in soil of the conterminous United States[J].Journal of Geochemical Exploration, 2015, 154:49-60. doi: 10.1016/j.gexplo.2015.01.006

    CrossRef Google Scholar

    [22] Santini T C.Application of the Rietveld refinement method for quantification of mineral concentrations in bauxite residues (alumina refining tailings)[J].International Journal of Mineral Processing, 2015, 139:1-10. doi: 10.1016/j.minpro.2015.04.004

    CrossRef Google Scholar

    [23] 许乃岑, 沈加林, 张静.X射线衍射-X射线荧光光谱-电子探针等分析测试技术在玄武岩矿物鉴定中的应用[J].岩矿测试, 2015, 34(1):75-81.

    Google Scholar

    Xu N C, Shen J L, Zhang J.Application of X-ray diffraction, X-ray fluorescence spectrometry and electron microprobe in the identification of basalt[J].Rock and Mineral Analysis, 2015, 34(1):75-81.

    Google Scholar

    [24] 万洪波, 廖立兵.膨润土中蒙脱石物相的定量分析[J].硅酸盐学报, 2009, 37(12):2055-2060.

    Google Scholar

    Wan H B, Liao L B.Quantitative phase analysis of montmorillonite in bentonite[J].Journal of the Chinese Ceramic Society, 2009, 37(12):2055-2060.

    Google Scholar

    [25] 邓苗, 汪灵, 林金辉.川西微晶白云母的X射线粉晶衍射分析[J].矿物学报, 2006, 26(2):131-136.

    Google Scholar

    Deng M, Wang L, Lin J H.Characteristics of micro-crystal muscovite in west Sichuan, China:An X-ray powder diffraction analysis[J].Acta Mineralogical Sinica, 2006, 26(2):131-136.

    Google Scholar

    [26] 迟广成, 肖刚, 伍月, 等.X射线粉晶衍射仪在大理岩鉴定与分类中的应用[J].岩矿测试, 2014, 33(5):698-705.

    Google Scholar

    Chi G C, Xiao G, Wu Y, et al.The application of X-ray powder diffraction to marble definition and classification[J].Rock and Mineral Analysis, 2014, 33(5):698-705.

    Google Scholar

    [27] 迟广成, 肖刚, 汪寅夫, 等.铁矿石矿物组分的X射线粉晶衍射半定量分析[J].冶金分析, 2015, 35(1):38-44.

    Google Scholar

    Chi G C, Xiao G, Wang Y F, et al.Semi-quantitative analysis of the mineral components of iron ores by X-ray powder diffraction[J].Metallurgical Analysis, 2015, 35(1):38-44.

    Google Scholar

    [28] 郝原芳, 赵爱林.方解石、白云石定量分析——X射线衍射法快速分析[J].有色矿冶, 2005, 21(5):58-60.

    Google Scholar

    Hao Y F, Zhao A L.A simple method of quantitative analysis for calcite and dolomite in rock by X-ray diffraction[J].Non-Ferrous Mining and Metallurgy, 2005, 21(5):58-60.

    Google Scholar

    [29] 杜谷, 王坤阳, 冉敬, 等.红外光谱/扫描电镜等现代大型仪器岩石矿物鉴定技术及其应用[J].岩矿测试, 2014, 33(5):625-633.

    Google Scholar

    Du G, Wang K Y, Ran J, et al.Application of IR/SEM and other modern instruments for mineral identification[J].Rock and Mineral Analysis, 2014, 33(5):625-633.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(4)

Article Metrics

Article views(3176) PDF downloads(110) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint