Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2020 Vol. 39, No. 4
Article Contents

Hai-bo HUANG, Jia-lin SHEN, Yu CHEN, Jian-kun LIU. Simultaneous Determination of Silver, Boron, Tin, Molybdenum and Lead in Geological Samples by Atomic Emission Spectrometer with Full Spectrum[J]. Rock and Mineral Analysis, 2020, 39(4): 555-565. doi: 10.15898/j.cnki.11-2131/td.201909230137
Citation: Hai-bo HUANG, Jia-lin SHEN, Yu CHEN, Jian-kun LIU. Simultaneous Determination of Silver, Boron, Tin, Molybdenum and Lead in Geological Samples by Atomic Emission Spectrometer with Full Spectrum[J]. Rock and Mineral Analysis, 2020, 39(4): 555-565. doi: 10.15898/j.cnki.11-2131/td.201909230137

Simultaneous Determination of Silver, Boron, Tin, Molybdenum and Lead in Geological Samples by Atomic Emission Spectrometer with Full Spectrum

  • BACKGROUNDThe contents of silver, tin, boron, molybdenum, and lead in geological samples are extremely important for studying the metallogenic regularity and for geochemical prospecting. Current analytical methods rarely determine silver, tin, boron, molybdenum, and lead simultaneously. OBJECTIVESTo establish a method to simultaneously determine silver, tin, boron, molybdenum and lead in geological samples. METHODSTo eliminate the matrix interference, first-class standard materials (rock, soil and water sediments) were used for linear fitting of the synthetic silicate standard materials curve. By setting analytical line conversion values, different analytical line can be used for samples with different contents. RESULTSThe detection limits of silver, tin, boron, molybdenum, and lead were 0.0077μg/g, 0.19μg/g, 0.68μg/g, 0.058μg/g, 0.49μg/g, respectively. The precisions of the method were 3.23%-9.39%. The measured value of national first class standard materials including soil, water sediments and rock by this method was in accordance with standard values, with an absolute value of △logC < 0.10. The qualified rates of actual sample were 92%-98%, and the qualified rate of the inspection sample was 100%. CONCLUSIONSThis method is easy to apply and can be used to analyze samples rapidly. It can also be used to avoid contamination during sample dilution. Compared with traditional atomic emission spectrometry that uses a single analytical spectrum line, this method can be used to obtain a value which is closer to the standard value of national standard materials. The detection limit of this method is much lower than the standard value of the specification of testing quality management for geological laboratories.
  • 加载中
  • [1] 张文华, 王彦东, 吴冬梅, 等.交流电弧直读光谱法快速测定地球化学样品中的银、锡、硼、钼、铅[J].中国无机分析化学, 2013, 3(4):16-19.

    Google Scholar

    Zhang W H, Wang Y D, Wu D M, et al.Rapid determination of silver, tin, boron, molybdenum and lead in geochemical samples by AC arc direct-reading spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2013, 3(4):16-19.

    Google Scholar

    [2] 肖细炼, 王亚夫, 陈燕波, 等.交流电弧光电直读发射光谱法测定地球化学样品中银硼锡[J].冶金分析, 2018, 38(7):27-32.

    Google Scholar

    Xiao X L, Wang Y F, Chen Y B, et al.Determination of silver, boron and tin in geochemical samples by alternating current arc optoelectronic direct reading emission spectrometry[J].Metallurgical Analysis, 2018, 38(7):27-32.

    Google Scholar

    [3] 聂高升.CCD-Ⅰ型平面光栅电弧直读发射光谱仪测Ag、B、Sn、Pb、Mo[J].四川地质学报, 2018, 38(2):342-344.

    Google Scholar

    Nie G S.Detection of Ag, B, Sn, Pb and Mo by plane grating arc direct-reading emission spectrometry CCD-Ⅰ[J].Acta Geologica Sichuan, 2018, 38(2):342-344.

    Google Scholar

    [4] 朱小龙.电感耦合等离子体发射光谱(ICP-OES)法测定钕铁硼磁体中铅含量[J].中国无机分析化学, 2019, 9(2):9-11.

    Google Scholar

    Zhu X L.Determination of lead in neodymium-iron-boron with ICP-OES[J].Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(2):9-11.

    Google Scholar

    [5] 肖立青, 谭丽娟, 苏卫汉, 等.电感耦合等离子体发射光谱法测定地质样品中的钨、钼、锡[J].中国无机分析化学, 2013, 3(2):35-38.

    Google Scholar

    Xiao L Q, Tan L J, Su W H, et al.Determination of W, Mo, Sn in geological samples by inductively coupled plasma-atomic emission spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2013, 3(2):35-38.

    Google Scholar

    [6] 杨柳, 高慧莉, 汪寅夫, 等.电感耦合等离子体发射光谱法测高纯银中19种微量元素[J].地质与资源, 2019, 28(1):95-97.

    Google Scholar

    Yang L, Gao H L, Wang Y F, et al.Determination of nineteen trace elements in high purity silver by ICP-AES[J].Geology and Resources, 2019, 28(1):95-97.

    Google Scholar

    [7] 惠泊宁, 李维敏, 任洁, 等.电感耦合等离子体原子发射光谱法测定N36锆合金中微量钼和铅[J].分析测试技术与仪器, 2019, 25(1):15-21.

    Google Scholar

    Hui B N, Li W M, Ren J, et al.Determination of trace molybdenum and lead in N36 zirconium alloy by inductively coupled plasma optical emission spectrometry[J].Analysis and Testing Technology and Instruments, 2019, 25(1):15-21.

    Google Scholar

    [8] 杨新能, 陈德, 李小青.碱熔-电感耦合等离子体原子发射光谱法测定铁矿石中铬铌钼钨锡[J].冶金分析, 2019, 39(12):55-60.

    Google Scholar

    Yang X N, Chen D, Li X Q.Determination of chromium, niobium, molybdenum, tungsten, tininiron ore by inductively coupled plasma atomic emission spectrometry with alkali fusion[J].Metallurgical Analysis, 2019, 39(12):55-60.

    Google Scholar

    [9] 乐淑葵, 段永梅.电感耦合等离子体质谱法(ICP-MS)测定土壤中的重金属元素[J].中国无机分析化学, 2015, 5(3):16-19.

    Google Scholar

    Yue S K, Duan Y M.Determination of heavy metal elements in soil by ICP-MS[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(3):16-19.

    Google Scholar

    [10] 于亚辉, 闫红岭, 陈浩风, 等.电感耦合等离子体质谱法测定地球化学样品中的银[J].理化检验(化学分册), 2016, 52(7):834-836.

    Google Scholar

    Yu Y H, Yan H L, Chen H F, et al.Determination of silver in geological sample by inductively coupled plasma mass spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2016, 52(7):834-836.

    Google Scholar

    [11] 凤海元, 马海萍.溶样方法对电感耦合等离子体质谱法测定区域地球化学调查样品中6种元素的影响[J].冶金分析, 2016, 36(8):18-24.

    Google Scholar

    Feng H Y, Ma H P.Influence of sample dissolution method on the determination of six elements in regional geochemical survey sample by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2016, 36(8):18-24.

    Google Scholar

    [12] 杭乐, 徐周毅, 杭纬, 等.中国原子光谱技术及应用发展近况[J].光谱学与光谱分析, 2019, 39(5):1329-1339.

    Google Scholar

    Hang L, Xu Z Y, Hang W, et al.Recent technical and application development of atomic spectrometry in China[J].Spectroscopy and Spectral Analysis, 2019, 39(5):1329-1339.

    Google Scholar

    [13] 阳国运, 唐裴颖, 张洁, 等.电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗[J].岩矿测试, 2019, 38(2):154-159.

    Google Scholar

    Yang G Y, Tang P Y, Zhang J, et al.Determination of boron, iodine, tin and germanium in geochemical samples by inductively coupled plasma mass spectrometry[J].Rock and Mineral Analysis, 2019, 38(2):154-159.

    Google Scholar

    [14] 杨贤, 张洁, 蔡金芳, 等.电感耦合等离子体质谱法测定地质样品中硼[J].冶金分析, 2014, 34(6):7-10.

    Google Scholar

    Yang X, Zhang J, Cai J F, et al.Determination of boron in geological samples by inductively coupled plasma-mass spectrometry[J].Metallurgical Analysis, 2014, 34(6):7-10.

    Google Scholar

    [15] Satyanarayanan M, Balaram V, Sawant S S, et al.Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J].Atomic Spectroscopy, 2018, 39(1):1-15.

    Google Scholar

    [16] 杨凤云, 高会艳, 徐霞, 等.火焰原子吸收分光光度法测定铅精矿中高含量银[J].化学分析计量, 2019, 28(6):85-88.

    Google Scholar

    Yang F Y, Gao H Y, Xu X, et al.Determination of high silver content in lead concentrate by flame atomic absorption spectrophotometry[J].Chemical Analysis and Meterage, 2019, 28(6):85-88.

    Google Scholar

    [17] 任俊涛, 班俊生.容量瓶消解称量-火焰原子吸收分光光度法测定地质样品中的银[J].黄金, 2018, 39(5):78-80.

    Google Scholar

    Ren J T, Ban J S.Determination of silver in geological samples by FAAS with volumetric flask digestion and solution weighting method[J].Gold, 2018, 39(5):78-80.

    Google Scholar

    [18] 牛明, 裴彦.浅析分光光度法测定地质样品中微量锡[J].世界有色金属, 2017(5):240-241.

    Google Scholar

    Niu M, Pei Y.Spectrophotometric determination of trace tin in geological samples[J].World Nonferrous Metals, 2017(5):240-241.

    Google Scholar

    [19] Rahman M U, Kazi T G, Shaikh H, et al.Fractionation of manganese in soil samples collected from the Lakhra coal field in Pakistan using two modes of atomic absorption spectrometry[J].Atomic Spectroscopy, 2018, 39(6):258-263. doi: 10.46770/AS.2018.06.006

    CrossRef Google Scholar

    [20] 王娜, 徐铁民, 魏双, 等.微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素[J].岩矿测试, 2020, 39(1):68-76.

    Google Scholar

    Wang N, Xu T M, Wei S, et al.Determination of rare earth elements in ultra-fine rock and soil samples by ICP-MS using microwave digestion[J].Rock and Mineral Analysis, 2020, 39(1):68-76.

    Google Scholar

    [21] 雷占昌, 韩斯琴图, 蒋常菊, 等.过氧化钠碱熔-电感耦合等离子体质谱法测定原生矿石中的锡[J].岩矿测试, 2019, 38(3):326-332.

    Google Scholar

    Lei Z C, Han S Q T, Jiang C J, et al.Determination of tin in primary ores by inductively coupled plasma mass spectrometry with sodium peroxide alkali fusion[J].Rock and Mineral Analysis, 2019, 38(3):326-332.

    Google Scholar

    [22] 陈伟锐, 董薇.电弧原子发射光谱法测定地球化学勘查样品中镍元素[J].广东化工, 2013, 40(18):125-126.

    Google Scholar

    Chen W R, Dong W.Determination of Ni in geochemical exploration samples by emission spectrometry[J].Guangdong Chemical Industry, 2013, 40(18):125-126.

    Google Scholar

    [23] 张文华, 王彦东, 吴冬梅, 等.交、直流电弧直读光谱仪的研制及其应用[J].光谱仪器与分析, 2011(增刊1):96-104.

    Google Scholar

    Zhang W H, Wang Y D, Wu D M, et al.Development and application of DC and AC direct reading arc emission spectrometer[J].Spectral Instruments and Analysis, 2011(Supplement 1):96-104.

    Google Scholar

    [24] 俞晓峰, 李锐, 寿淼钧, 等.E5000型全谱直读型电弧发射光谱仪研制及其在地球化学样品分析中应用[J].岩矿测试, 2015, 34(1):40-47.

    Google Scholar

    Yu X F, Li R, Shou M J, et al.Development and application of full spectrum direct reading arc emission spectrometer E5000 and its application in geochemical sample analysis[J].Rock and Mineral Analysis, 2015, 34(1):40-47.

    Google Scholar

    [25] 李小辉, 孙慧莹, 于亚辉等.交流电弧发射光谱法测定地球化学样品中银锡硼[J].冶金分析, 2017, 37(4):16-21.

    Google Scholar

    Li X H, Sun H Y, Yu Y H.Determination of sliver, tin and boron in geochemical sample by alternating current (AC) arc emission spectrometry[J].Metallurgical Analysis, 2017, 37(4):16-21.

    Google Scholar

    [26] 马彤宇.CCD-Ⅰ型平面光栅电弧直读发射光谱仪测定地球化学样品中银锡硼[J].资源信息与工程, 2017, 32(4):99-102.

    Google Scholar

    Ma T Y.Determination of Ag, Sn and B in geochemical samples by CCD-Ⅰplane grating electric arc direct reading emission spectrometer[J].Resource Information and Engineering, 2017, 32(4):99-102.

    Google Scholar

    [27] 胡跃波, 石亚萍, 李蓓, 等.交流电弧原子发射光谱法测定地质样品中的微量银[J].理化检验(化学分册), 2015, 51(10):1414-1417.

    Google Scholar

    Hu Y B, Shi Y P, Li B, et al.Determination of trace silver in geological samples by AC-AES[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2015, 51(10):1414-1417.

    Google Scholar

    [28] 高晶.发射光谱法测定铅锡银[J].西部探矿工程, 2013(1):115-117.

    Google Scholar

    Gao J.Determination of lead tin and silver by atomic emission spectroscopy[J].West-China Exploration Engineering, 2013(1):115-117.

    Google Scholar

    [29] 郭颖超, 张晓敏, 姚福存, 等.CCD-Ⅰ型平面光栅电弧直读发射光谱仪测定地球化学样品中银锡硼[J].黄金, 2016, 37(10):85-88.

    Google Scholar

    Guo Y C, Zhang X M, Yao F C, et al.Determination of Ag, B and Sn in geochemical samples by CCD-Ⅰ plane grating electric arc direct reading emission spectrometer[J].Gold, 2016, 37(10):85-88.

    Google Scholar

    [30] 王承娟, 乐兵.直流电弧原子发射光谱法测定地球化学样品中银、硼、锡和钼[J].理化检验(化学分册), 2017, 53(11):1470-1473.

    Google Scholar

    Wang C J, Yue B.Determination of Ag, B, Sn and Mo in geochemical samples by DC arc direct reading emission spectrometer[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(11):1470-1473.

    Google Scholar

    [31] 郝志红, 姚建贞, 唐瑞玲, 等.交流电弧直读原子发射光谱法测定地球化学样品中银、硼、锡、钼、铅的方法研究[J].地质学报, 2016, 90(8):2070-2082.

    Google Scholar

    Hao Z H, Yao J Z, Tang R L, et al.Study on the method for the determination of silver, boron, tin, molybdenum, lead in geochemical samples by AC-arc direct reading atomic emission spectroscopy[J].Acta Geologica Sinica, 2016, 90(8):2070-2082.

    Google Scholar

    [32] 吴建华.应用熔融技术电弧发射光谱法测定区域化探样品中20多个元素[J].甘肃科技, 2010, 26(1):61-63.

    Google Scholar

    Wu J H.Determination of more than 20 elements in regional geochemical samples by arc emission spectrometry[J].Gansu Science and Technology, 2010, 26(1):61-63.

    Google Scholar

    [33] 贡勇喜.发射光谱法测定化探样品中银钨等19个微量元素[J].江西建材, 2016(16):229-232.

    Google Scholar

    Gong Y X.Determination of more than 19 trace elements in geochemical samples by emission spectrometry[J].Jiangxi Building Materials, 2016(16):229-232.

    Google Scholar

    [34] 吴冬梅, 赵燕秋, 付国余.全谱电弧发射光谱法测定五氧化二铌中18种杂质元素[J].冶金分析, 2020, 40(1):40-45.

    Google Scholar

    Wu D M, Zhao Y Q, Fu G Y.Determination of eighteen impurity elements in niobium pentoxide by full spectrum arc emission spectrometry[J]. Metallurgical Analysis, 2020, 40(1):40-45.

    Google Scholar

    [35] 杨俊, 代阿芳, 林庆文, 等.直读发射光谱仪测定地质样品中银、硼和锡的含量[J].理化检验(化学分册), 2017, 50(11):1296-1299.

    Google Scholar

    Yang J, Dai A F, Lin Q W, et al.Determination of Ag, B and Sn in geochemical samples with direct reading atomic emission spectrometer[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 50(11):1296-1299.

    Google Scholar

    [36] 赵丽.粉末固体进样-电弧直读发射光谱法测试地球化学样品多元素方法研究[J].化学工程与装备, 2017(6):240-242.

    Google Scholar

    Zhao L.Determination of elements in geochemical samples for powder solid sampling by arc direct reading emission spectrometry[J].Chemical Engineering and Equipment, 2017(6):240-242.

    Google Scholar

    [37] 龙志武, 李志雄, 赵刚, 等.直读发射光谱法测定银硼钼锡铅的载体缓冲剂研究[J].黄金, 2017, 38(1):76-79.

    Google Scholar

    Long Z W, Li Z X, Zhao G, et al.Study on carrier buffer in the determination of Ag, B, Mo, Sn and Pb by direct reading emission spectrometry[J].Gold, 2017, 38(1):76-79.

    Google Scholar

    [38] 余宇, 和振云, 毛振才, 等.交流电弧发射光谱的不同灵敏度谱线测定锡[J].岩矿测试, 2013, 32(1):44-47.

    Google Scholar

    Yu Y, He Z Y, Mao Z C, et al.Determination of tin by spectral lines with different sensitivity of alternating current arc emission spectroscopy[J].Rock and Mineral Analysis, 2013, 32(1):44-47.

    Google Scholar

    [39] 吴冬梅, 赵燕秋, 付国余, 等.多工作曲线-全谱交直流电弧发射光谱法测定地质样品中的铅含量[J].中国无机分析化学, 2018, 8(3):16-18.

    Google Scholar

    Wu D M, Zhao Y Q, Fu G Y, et al.Determination of lead in geological samples by full spectrum AC/DC arc emission spectrometry with a multi-calibration curve[J].Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(3):16-18.

    Google Scholar

    [40] 李亚静, 李士杰, 唐秀婷, 等.CCD-Ⅰ型平面光栅电弧直读发射光谱法测定化探样品中铅、锡、钼、铜、银、锌[J].中国无机分析化学, 2018, 8(6):29-35.

    Google Scholar

    Li Y J, Li S J, Tang X T, et al.Determination of Pb, Sn, Mo, Cu, Ag and Zn in geochemical exploration samples by CCD-Ⅰ plane grating electric arc direct reading emission spectrometer[J].Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(6):29-35.

    Google Scholar

    [41] 王彩玉, 刘玖芬, 李君强, 等.AES-7200型专用发射光谱仪在地质样品分析中的应用[J].黄金, 2016, 37(4):77-80.

    Google Scholar

    Wang C Y, Liu J F, Li J Q, et al.Application of AES-7200 emission spectrometer in geologic samples analysis[J].Gold, 2016, 37(4):77-80.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(5)

Article Metrics

Article views(1979) PDF downloads(151) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint