Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2016 Vol. 35, No. 6
Article Contents

Yu-miao MENG, Xiao-wen HUANG, Jian-feng GAO, Zhi-hui DAI, Liang QI. Determination of Trace Elements in Magnetite by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using Multiple External Standards without an Internal Standard Calibration[J]. Rock and Mineral Analysis, 2016, 35(6): 585-594. doi: 10.15898/j.cnki.11-2131/td.2016.06.004
Citation: Yu-miao MENG, Xiao-wen HUANG, Jian-feng GAO, Zhi-hui DAI, Liang QI. Determination of Trace Elements in Magnetite by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using Multiple External Standards without an Internal Standard Calibration[J]. Rock and Mineral Analysis, 2016, 35(6): 585-594. doi: 10.15898/j.cnki.11-2131/td.2016.06.004

Determination of Trace Elements in Magnetite by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using Multiple External Standards without an Internal Standard Calibration

More Information
  • Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) is commonly used to analyze trace elements in magnetite, which can be divided into internal standard (IS) and no internal standard (NIS) methods according to calibration techniques. IS method involves a relatively complex process for the determination of Fe content by Electron Microprobe. Moreover, elemental content are affected by the analytical accuracy of IS elemental iron. An analytical method for determination of trace elements in magnetite by LA-ICP-MS using multiple external standards (basaltic glasses BCR-2g, BIR-1g, BHVO-2g, GSE-1G) without an IS element has been developed. The proposed method avoids the determination of the IS element. Trace element compositions of komatitic glass (GOR-128g) and natural magmatic magnetite (BC 28) were determined by the proposed method and used to evaluate the reliability of the method. Results show that the analytical values of komatitic glass are consistent with the certified values and reported values by the existing IS method. The relative standard deviation (RSD) of most elements is smaller than 5%. Most elements of natural magmatic magnetite have RSD better than 7% between the analytical values and the certified values, and RSD better than 15% between the analytical values and the reported values by the IS method. This indicates that multiple external standards without an IS method can determine accurate calibration of trace element concentrations of iron-rich silicates and magnetite, overcoming the matrix effects. Therefore, multiple external standards without an IS method is a fast and precise method for determination of trace elements in magnetite, which has a great application potential.
  • 加载中
  • [1] Jackson S E,Longerich H P,Dunning G R,et al.The Application of Laser-Ablation Microprobe-Inductively Coupled Plasma-Mass Spectrometry (LAM-ICP-MS) to in situ Trace-element Determinations in Minerals[J].Canadian Mineralogist,1992,30:1049-1064.

    Google Scholar

    [2] Fryer B J,Jackson S E,Longerich H P.The Design,Operation and Role of the Laser-Ablation Microprobe Coupled with an Inductively Coupled Plasma-Mass Spectrometer (LAM-ICP-MS) in the Earth Sciences[J].The Canadian Mineralogist,1995,33:303-312.

    Google Scholar

    [3] Russo R E,Mao X L,Liu H C,et al.Laser Ablation in Analytical Chemistry-A Review[J].Talanta,2002,57(3):425-451. doi: 10.1016/S0039-9140(02)00053-X

    CrossRef Google Scholar

    [4] Mokgalaka N S,Gardea-Torresdey J L.Laser Ablation Inductively Coupled Plasma Mass Spectrometry:Principles and Applications[J].Applied Spectroscopy Reviews,2006,41(2):131-150. doi: 10.1080/05704920500510703

    CrossRef Google Scholar

    [5] Cook N,Ciobanu C L,George L,et al.Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry:Approaches and Opportunities[J].Minerals,2016,6(111):1-34.

    Google Scholar

    [6] Norman M,Robinson P,Clark D.Major- and Trace-element Analysis of Sulfide Ores by Laser-Ablation ICP-MS,Solution ICP-MS,and XRF:New Data on International Reference Materials[J].The Canadian Mineralogist,2003,41(2):293-305. doi: 10.2113/gscanmin.41.2.293

    CrossRef Google Scholar

    [7] Müller A,Wiedenbeck M,van Den Kerkhof A M,et al.Trace Elements in Quartz-A Combined Electron Microprobe,Secondary Ion Mass Spectrometry,Laser-Ablation ICP-MS,and Cathodoluminescence Study[J].European Journal of Mineralogy,2003,15(4):747-763. doi: 10.1127/0935-1221/2003/0015-0747

    CrossRef Google Scholar

    [8] Danyushevsky L,Robinson P,Gilbert S,et al.Routine Quantitative Multi-element Analysis of Sulphide Minerals by Laser Ablation ICP-MS:Standard Development and Consideration of Matrix Effects[J].Geochemistry:Exploration,Environment,Analysis,2011,11:51-60. doi: 10.1144/1467-7873/09-244

    CrossRef Google Scholar

    [9] Ding L,Yang G,Xia F,et al.A LA-ICP-MS Sulphide Calibration Standard Based on a Chalcogenide Glass[J].Mineralogical Magazine,2011,75(2):279-287. doi: 10.1180/minmag.2011.075.2.279

    CrossRef Google Scholar

    [10] 吴石头,王亚平,许春雪.激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J].岩矿测试,2015,34(5):503-511.

    Google Scholar

    Wu S T,Wang Y P,Xu C X.Research Progress on Reference Materials for in situ Elemental Analysis by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Rock and Mineral Analysis,2015,34(5):503-511.

    Google Scholar

    [11] Dare S A S,Barnes S J,Beaudoin G.Variation in Trace Element Content of Magnetite Crystallized from a Fractionating Sulfide Liquid,Sudbury,Canada:Implications for Provenance Discrimination[J].Geochimica et Cosmochimica Acta,2012,88:27-50. doi: 10.1016/j.gca.2012.04.032

    CrossRef Google Scholar

    [12] Gao J F,Zhou M F,Lightfoot P C,et al.Sulfide Saturation and Magma Emplacement in the Formation of the Permian Huangshandong Ni-Cu Sulfide Deposit,Xinjiang,Northwestern China[J].Economic Geology,2013,108:1833-1848. doi: 10.2113/econgeo.108.8.1833

    CrossRef Google Scholar

    [13] Nadoll P,Angerer T,Mauk J L,et al.The Chemistry of Hydrothermal Magnetite:A Review[J].Ore Geology Reviews,2014,61:1-32. doi: 10.1016/j.oregeorev.2013.12.013

    CrossRef Google Scholar

    [14] Liu P P,Zhou M F,Chen W T,et al.In-situ LA-ICP-MS Trace Elemental Analyses of Magnetite:Fe-Ti-(V) Oxide-bearing Mafic-Ultramafic Layered Intrusions of the Emeishan Large Igneous Province,SW China[J].Ore Geology Reviews,2015,65:853-871. doi: 10.1016/j.oregeorev.2014.09.002

    CrossRef Google Scholar

    [15] Huang X W,Zhou M F,Qi L,et al.Re-Os Isotopic Ages of Pyrite and Chemical Composition of Magnetite from the Cihai Magmatic-hydrothermal Fe Deposit,NW China[J].Mineralium Deposita,2013,48(8):925-946. doi: 10.1007/s00126-013-0467-2

    CrossRef Google Scholar

    [16] Huang X W,Gao J F,Qi L,et al.In-situ LA-ICP-MS Trace Elemental Analyses of Magnetite and Re-Os Dating of Pyrite:The Tianhu Hydrothermally Remobilized Sedimentary Fe Deposit,NW China[J].Ore Geology Reviews,2015,65:900-916. doi: 10.1016/j.oregeorev.2014.07.020

    CrossRef Google Scholar

    [17] Huang X W,Zhou M F,Qiu Y Z,et al.In-situ LA-ICP-MS Trace Elemental Analyses of Magnetite:The Bayan Obo Fe-REE-Nb Deposit,North China[J].Ore Geology Reviews,2015,65:884-899. doi: 10.1016/j.oregeorev.2014.09.010

    CrossRef Google Scholar

    [18] Chen W T,Zhou M F,Gao J F,et al.Geochemistry of Magnetite from Proterozoic Fe-Cu Deposits in the Kangdian Metallogenic Province,SW China[J].Mineralium Deposita,2015,50(7):795-809. doi: 10.1007/s00126-014-0575-7

    CrossRef Google Scholar

    [19] Nadoll P,Mauk J L,Leveille R A,et al.Geochemistry of Magnetite from Porphyry Cu and Skarn Deposits in the Southwestern United States[J].Mineralium Deposita,2015,50(4):493-515. doi: 10.1007/s00126-014-0539-y

    CrossRef Google Scholar

    [20] Dupuis C,Beaudoin G.Discriminant Diagrams for Iron Oxide Trace Element Fingerprinting of Mineral Deposit Types[J].Mineralium Deposita,2011,46(3):1-17.

    Google Scholar

    [21] Dare S A S,Barnes S J,Beaudoin G,et al.Trace Elements in Magnetite as Petrogenetic Indicators[J].Mineralium Deposita,2014,49(7):785-796. doi: 10.1007/s00126-014-0529-0

    CrossRef Google Scholar

    [22] Huang X,Qi L,Meng Y.Trace Element Geochemistry of Magnetite from the Fe(-Cu) Deposits in the Hami Region,Eastern Tianshan Orogenic Belt,NW China[J].Acta Geologica Sinica (English Edition),2014,88(1):176-195. doi: 10.1111/acgs.2014.88.issue-1

    CrossRef Google Scholar

    [23] Boutroy E,Dare S A S,Beaudoin G,et al.Magnetite Composition in Ni-Cu-PGE Deposits Worldwide and Its Application to Mineral Exploration[J].Journal of Geochemical Exploration,2014,145:64-81. doi: 10.1016/j.gexplo.2014.05.010

    CrossRef Google Scholar

    [24] Makvandi S,Ghasemzadeh-Barvarz M,Beaudoin G,et al.Partial Least Squares-Discriminant Analysis of Trace Element Compositions of Magnetite from Various VMS Deposit Subtypes:Application to Mineral Exploration[J].Ore Geology Reviews,2016,78:388-408. doi: 10.1016/j.oregeorev.2016.04.014

    CrossRef Google Scholar

    [25] Makvandi S,Ghasemzadeh-Barvarz M,Beaudoin G,et al. Principal Component Analysis of Magnetite Composition from Volcanogenic Massive Sulfide Deposits:Case Studies from the Izok Lake (Nunavut,Canada) and Halfmile Lake (New Brunswick,Canada) Deposits[J].Ore Geology Reviews,2016,72:60-85. doi: 10.1016/j.oregeorev.2015.06.023

    CrossRef Google Scholar

    [26] Nadoll P,Koenig A E.LA-ICP-MS of Magnetite:Methods and Reference Materials[J].Journal of Analytical Atomic Spectrometry,2011,26(9):1872-1877. doi: 10.1039/c1ja10105f

    CrossRef Google Scholar

    [27] 张德贤,戴塔根,胡毅.磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨[J].岩矿测试,2012,31(1):120-126.

    Google Scholar

    Zhang D X,Dai T G,Hu Y.Analysis of Trace Elements in Magnetites Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Rock and Mineral Analysis,2012,31(1):120-126.

    Google Scholar

    [28] 陈华勇,韩金生.磁铁矿单矿物研究现状、存在问题和研究方向[J].矿物岩石地球化学通报,2015,34(4):724-730.

    Google Scholar

    Chen H Y,Han J S.Study of Magnetite:Problems and Future[J].Bulletin of Mineralogy,Petrology and Geochemistry,2015,34(4):724-730.

    Google Scholar

    [29] Leach A M,Hieftje G M.Methods for Shot-to-Shot Normalization in Laser Ablation with an Inductively Coupled Plasma Time-of-Flight Mass Spectrometer[J].Journal of Analytical Atomic Spectrometry,2000,15(9):1121-1124. doi: 10.1039/b001968m

    CrossRef Google Scholar

    [30] Leach A M,Hieftje G M.Identification of Alloys Using Single Shot Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry,2002,17(8):852-857. doi: 10.1039/b203523p

    CrossRef Google Scholar

    [31] Latkoczy C,Müller Y,Schmutz P,et al.Quantitative Element Mapping of Mg Alloys by Laser Ablation ICP-MS and EPMA[J].Applied Surface Science,2005,252(1):127-132. doi: 10.1016/j.apsusc.2005.02.040

    CrossRef Google Scholar

    [32] Halicz L,Günther D.Quantitative Analysis of Silicates Using LA-ICP-MS with Liquid Calibration[J].Journal of Analytical Atomic Spectrometry,2004,19(12):1539-1545. doi: 10.1039/B410132D

    CrossRef Google Scholar

    [33] Guillong M,Hametner K,Reusser E,et al.Preliminary Characterisation of New Glass Reference Materials (GSA-1G,GSC-1G,GSD-1G and GSE-1G) by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using 193 nm,213 nm and 266 nm Wavelengths[J].Geostandards and Geoanalytical Research,2005,29(3):315-331. doi: 10.1111/ggr.2005.29.issue-3

    CrossRef Google Scholar

    [34] Liu Y,Hu Z,Gao S,et al.In-situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard[J].Chemical Geology,2008,257(1-2):34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [35] Guillong M,Günther D.Effect of Particle Size Distri-bution on ICP-induced Elemental Fractionation in Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry,2002,17(8):831-837. doi: 10.1039/B202988J

    CrossRef Google Scholar

    [36] Jackson S E,Günther D.The Nature and Sources of Laser Induced Isotopic Fractionation in Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry,2003,18(3):205-212. doi: 10.1039/b209620j

    CrossRef Google Scholar

    [37] Longerich H P,Jackson S E,Günther D.Laser Ablation Inductively Coupled Plasma Mass Spectrometric Transient Signal Data Acquisition and Analyte Concentration Calculation[J].Journal of Analytical Atomic Spectrometry,1996,11(9):899-904. doi: 10.1039/JA9961100899

    CrossRef Google Scholar

    [38] Raju P V S,Barnes S J,Savard D.Using Magnetite as an Indicator Mineral,Step 1:Calibration of LA-ICP-MS[C]//Proceedings of 11th International Platinum Symposium.Ontario:Ontario Geological Survey,2010:439-442.

    Google Scholar

    [39] Hu H,Lentz D,Li J W,et al.Reequilibration Processes in Magnetite from Iron Skarn Deposits[J].Economic Geology,2015,110(1):1-8. doi: 10.2113/econgeo.110.1.1

    CrossRef Google Scholar

    [40] Hu H,Li J W,Lentz D,et al.Dissolution-Reprecipitation Process of Magnetite from the Chengchao Iron Deposit:Insights into Ore Genesis and Implication for in-situ Chemical Analysis of Magnetite[J].Ore Geology Reviews,2014,57:393-405. doi: 10.1016/j.oregeorev.2013.07.008

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(3)

Article Metrics

Article views(2820) PDF downloads(61) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint