Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2017 Vol. 36, No. 5
Article Contents

Hong-ze YAN, Hai-jie CHEN, Bin-bin SUN, Guo-hua ZHOU, Ling HE, Yin-fei LIU, Teng-yun WANG. Study on the Availability of Wet Chemical Digestion of Geo-electrochemical Polyurethane Foam Samples[J]. Rock and Mineral Analysis, 2017, 36(5): 510-518. doi: 10.15898/j.cnki.11-2131/td.201610050150
Citation: Hong-ze YAN, Hai-jie CHEN, Bin-bin SUN, Guo-hua ZHOU, Ling HE, Yin-fei LIU, Teng-yun WANG. Study on the Availability of Wet Chemical Digestion of Geo-electrochemical Polyurethane Foam Samples[J]. Rock and Mineral Analysis, 2017, 36(5): 510-518. doi: 10.15898/j.cnki.11-2131/td.201610050150

Study on the Availability of Wet Chemical Digestion of Geo-electrochemical Polyurethane Foam Samples

More Information
  • As the pretreatment methods in analyzing geo-electrochemical polyurethane foam samples, ashing and microwave digestion methods are suitable for determination of most elements. Both methods have their disadvantages. The ashing method may cause volatilization loss of some elements (e.g. Hg, As) under high temperature, whereas issues about sample representation and detection limit exist in the microwave digestion method because of the small amount of sample (0.1 g). Wet chemical digestion is a traditional pretreatment method, which is widely used in the pretreatment of various geochemical samples and has the advantages of complete digestion, low element loss and good sample representation. However, because of the problems of explosion and acid blank during digestion of polyurethane foam (organic) samples, this method has not been used in pretreatment of geo-electrochemical foam samples. For this study a geo-electrochemical exploration line in Luokedun hydrothermal lead-zinc polymetallic deposit in Inner Mongolia was selected as the research subject. 20 mL of Nitric acid, 5 mL of perchloric acid, and 5 mL of aqua regia were used to digest 0.5 g foam samples. The contents of some related elements were determined by High-resolution Inductively Coupled Plasma-Mass Spectrometry (HR-ICP-MS) and Atomic Fluorescence Spectrometry (AFS). Results show that contents of the foam blank are relatively low for most elements, and the geochemical profiles show good anomalies. It is suggested that wet digestion is feasible in the analysis of geo-electrochemical polyurethane foam samples, and could be used widely in the future.
  • 加载中
  • [1] 谢学锦, 王学求.深穿透地球化学新进展[J].地学前缘, 2003, 10(1):225-238.

    Google Scholar

    Xie X J, Wang X Q.Recent developments on deep-penetrating geochemistry[J].Earth Science Frontiers, 2003, 10(1):225-238.

    Google Scholar

    [2] Wang M Q, Wu H, Liao Y, et al.Pilot study of partial extraction geochemistry for base metal exploration in a thick loess-covered region[J].Journal of Geochemical Exploration, 2015, 148:231-240. doi: 10.1016/j.gexplo.2014.10.003

    CrossRef Google Scholar

    [3] Wang X Q, Zhang B M, Xin L, et al.Geochemical challenges of diverse regolith-covered terrains for mineral exploration in China[J].Ore Geology Reviews, 2016, 73:417-431. doi: 10.1016/j.oregeorev.2015.08.015

    CrossRef Google Scholar

    [4] Alekseev S G, Dukhanin A S, Veshev S A, et al.Some aspects of practical use of geo-electrochemical methods of exploration for deep-seated mineralization[J].Journal of Geochemical Exploration, 1996, 56(1):79-86. doi: 10.1016/0375-6742(95)00051-8

    CrossRef Google Scholar

    [5] 刘占元, 程志中, 孙彬彬.电提取技术中载体物质应用效果提高的途径[J].物探与化探, 2005, 29(5):401-403.

    Google Scholar

    Liu Z Y, Cheng Z Z, Sun B B.The processing of the carrier material in the cathode receiver[J].Geophysical & Geochemical Exploration, 2005, 29(5):401-403.

    Google Scholar

    [6] Luo X R, Hou B H, Wen M L, et al.CHIM-geo-electrochemical method in search of concealed mineralisation in China and Australia[J].Chinese Journal of Geochemistry, 2008, 27(2):198-202. doi: 10.1007/s11631-008-0198-8

    CrossRef Google Scholar

    [7] Hoover D B, Smith D B, Leinz R W.CHIM; an electro-geochemical partial extraction method; an historical overview[R]. U.S. Geological Survey, 1997:1-27.

    Google Scholar

    [8] 孙彬彬, 刘占元, 周国华.地电化学方法技术研究现状及发展趋势[J].物探与化探, 2015, 39(1):16-21. doi: 10.11720/wtyht.2015.1.03

    CrossRef Google Scholar

    Sun B B, Liu Z Y, Zhou G H.Research status and development trends for geo-electrochemical methods[J].Geophysical & Geochemical Exploration, 2015, 39(1):16-21. doi: 10.11720/wtyht.2015.1.03

    CrossRef Google Scholar

    [9] 满荣浩, 罗先熔, 易超.地电化学法在鄂尔多斯盆地东胜地区寻找隐伏铀矿中的应用[J].矿物岩石地球化学通报, 2015, 34(5):1007-1013.

    Google Scholar

    Man R H, Luo X R, Yi C.Application of the geo-electrochemical method on prospecting for concealed uranium deposits in the Dongsheng area of the Ordos Basin[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5):1007-1013.

    Google Scholar

    [10] 刘攀峰, 文美兰, 张佳莉.地电化学集成技术在云南西邑铅锌矿区的找矿应用[J].物探与化探, 2016, 40(4):655-660.

    Google Scholar

    Liu P F, Wen M L, Zhang J L.The application of geo-electrochemical integrated technology to the prospecting in the Xiyi Pb-Zn deposit, Yunnan Province[J].Geophysical and Geochemical Exploration, 2016, 40(4):655-660.

    Google Scholar

    [11] 聂凤莲, 艾晓军, 逮艳军.地电化学(泡塑)样品中金的预处理[J].黄金科学技术, 2007, 15(6):52-55.

    Google Scholar

    Nie F L, Ai X J, Dai Y J.Pretreatment of Au geoelectrical chemical samples (foam)[J].Gold Science and Technology, 2007, 15(6):52-55.

    Google Scholar

    [12] 施意华, 杨仲平, 黄俭惠, 等.ICP-MS测定电吸附找矿泡塑样品中微量元素[J].光谱学与光谱分析, 2009, 29(6):1687-1690.

    Google Scholar

    Shi Y H, Yang Z P, Huang J H, et al.Determination of trace elements in electrical absorption prospecting polyform sample by inductively coupled plasma mass spectrometry[J].Spectroscopy and Spectral Analysis, 2009, 29(6):1687-1690.

    Google Scholar

    [13] 张勤, 白金峰, 王烨.地壳全元素配套分析方案及分析质量监控系统[J].地学前缘, 2012, 19(3):33-42.

    Google Scholar

    Zhang Q, Bai J F, Wang Y.Analytical scheme and quality monitoring system for China geochemical baselines[J].Earth Science Frontiers, 2012, 19(3):33-42.

    Google Scholar

    [14] 刘亚轩, 李晓静, 白金峰, 等.植物样品中无机元素分析的样品前处理方法和测定技术[J].岩矿测试, 2013, 32(5):681-693.

    Google Scholar

    Liu Y X, Li X J, Bai J F, et al.Review on sample pretreatment methods and determination techniques for inorganic elements in plant samples[J].Rock and Mineral Analysis, 2013, 32(5):681-693.

    Google Scholar

    [15] 严洪泽, 孙彬彬, 徐进力, 等.灰化法与微波消解法处理地电化学泡塑样品的分析效果对比研究[J].岩矿测试, 2016, 35(3):59-66.

    Google Scholar

    Yan H Z, Sun B B, Xu J L, et al.Comparison of ashing and microwave digestion in analyzing geo-electrochemical polyurethane foam samples[J].Rock and Mineral Analysis, 2016, 35(3):59-66.

    Google Scholar

    [16] Bednar A J, Jones W T, Chappell M A, et al.A modified acid digestion procedure for extraction of tungsten from soil[J].Talanta, 2010, 80(3):1257-1263. doi: 10.1016/j.talanta.2009.09.017

    CrossRef Google Scholar

    [17] 胡艳巧, 程文翠, 支云川, 等.四酸溶矿-电感耦合等离子体发射光谱法测定铬铁矿中多种元素[J].分析试验室, 2016, 35(11):1312-1316.

    Google Scholar

    Hu Y Q, Cheng W C, Zhi Y C, et al.Simultaneous determination of 11 elements in chromites by inductively coupled plasma-atomic emission spectrometry with HCl-HNO3-HF-HClO4 digestion method[J].Chinese Journal of Analysis Laboratory, 2016, 35(11):1312-1316.

    Google Scholar

    [18] 马生凤, 温宏利, 马新荣, 等.四酸溶样-电感耦合等离子体原子发射光谱法测定铁、铜、锌、铅等硫化物矿石中22个元素[J].矿物岩石地球化学通报, 2011, 30(1):65-72.

    Google Scholar

    Ma S F, Wen H L, Ma X R, et al.Determination of 22 elements in iron, copper, zinc, and lead sulphide ores by ICP-AES with four acids digestion[J].Bulletin of Minera-logy, Petrology and Geochemistry, 2011, 30(1):65-72.

    Google Scholar

    [19] 李晓辉, 王亮. 内蒙古自治区东乌珠穆沁旗洛恪顿铅锌多金属矿详查年度总结报告[R]. 赤峰: 内蒙古赤峰地质矿产勘查开发院, 2013.

    Google Scholar

    Li X H, Wang L.Detailed Survey Annual Summary Report of Luokedun Pb-Zn Polymetallic Deposit in Dong Ujimqin Banner, Inner Mongolia[R].Chifeng:Chifeng Mineral Resources Exploration and Development Institute of Inner Mongolia, 2013.

    Google Scholar

    [20] 徐立权, 陈志勇, 陈郑辉, 等.内蒙古东乌旗朝不楞铁矿区中粗粒花岗岩SHRIMP定年及其意义[J].矿床地质, 2010, 29(2):317-322.

    Google Scholar

    Xu L Q, Chen Z Y, Chen Z H, et al.SHRIMP dating of medium-coarse-grained granite in Chaobuleng iron deposit, Dong Ujimqin Banner, Inner Mongolia[J].Mineral Deposits, 2010, 29(2):317-322.

    Google Scholar

    [21] 孙彬彬, 刘占元, 周国华.固体载体型元素提取器研制[J].物探与化探, 2011, 35(3):375-378.

    Google Scholar

    Sun B B, Liu Z Y, Zhou G H.The development of the solid carrier elements extractor[J].Geophysical & Geochemical Exploration, 2011, 35(3):375-378.

    Google Scholar

    [22] 钱建平, 黄德阳, 谢彪武, 等.西藏谢通门县斯弄多铅锌矿区矿床地质特征和构造地球化学找矿研究[J].大地构造与成矿学, 2013, 37(1):29-41.

    Google Scholar

    Qian J P, Huang D Y, Xie B W, et al.Study on geology and tectono-geochemistry of the Silongduo lead-zinc deposit in Xietongmen country, Tibet[J].Geotectonica et Metallogenia, 2013, 37(1):29-41.

    Google Scholar

    [23] 胡剑辉, 吉蕴生, 曾志钢, 等.新疆萨热克铜矿床地球化学异常评价研究[J].矿产勘查, 2014, 5(2):281-292.

    Google Scholar

    Hu J H, Ji Y S, Zeng Z G, et al.Evaluation of geochemical anomalies of the Sareke copper deposit in Xinjiang[J].Mineral Exploration, 2014, 5(2):281-292.

    Google Scholar

    [24] 赵斌, 陈志兵, 董丽.氢化物发生-原子荧光光谱法测定植物样品中汞硒砷[J].岩矿测试, 2010, 29(3):319-321.

    Google Scholar

    Zhao B, Chen Z B, Dong L.Determination of Hg, Se and As in plant samples by hydride generation-atomic fluorescence spectrometry[J].Rock and Mineral Analysis, 2010, 29(3):319-321.

    Google Scholar

    [25] 程志中, 王学求, 胡忠贤, 等.森林沼泽区富含有机质样品中金的存在形式及对分析的影响[J].物探与化探, 2004, 28(3):206-208.

    Google Scholar

    Cheng Z Z, Wang X Q, Hu Z X, et al.Modes of occurrence of gold in samples rich in organic matter from forest-swamp areas and their influence upon analysis[J].Geophysical & Geochemical Exploration, 2004, 28(3):206-208.

    Google Scholar

    [26] 贺攀红, 杨珍, 荣耀, 等.氢化物发生-电感耦合等离子体发射光谱法测定铀矿地质样品中痕量硒[J].岩矿测试, 2016, 35(2):139-144.

    Google Scholar

    He P H, Yang Z, Rong Y, et al.Determination of trace selenium in uranium-bearing geological samples by hydride generation-inductively coupled plasma-optimal emission spectrometry[J].Rock and Mineral Analysis, 2016, 35(2):139-144.

    Google Scholar

    [27] 李自强, 李小英, 钟琦, 等.电感耦合等离子体质谱法测定土壤重金属普查样品中铬铜镉铅的关键环节研究[J].岩矿测试, 2016, 35(1):37-41.

    Google Scholar

    Li Z Q, Li X Y, Zhong Q, et al.Determination of Cr, Cu, Cd and Pb in soil samples by inductively coupled plasma-mass spectrometry for an investigation of heavy metal pollution[J].Rock and Mineral Analysis, 2016, 35(1):37-41.

    Google Scholar

    [28] 孙彬彬, 张学君, 周国华, 等.地电化学泡塑载体分析质量监控预研究[J].物探与化探, 2016, 40(3):557-560.

    Google Scholar

    Sun B B, Zhang X J, Zhou G H, et al.Pre-research on analytical quality monitoring for geo-electrochemical foam carrier[J].Geophysical & Geochemical Exploration, 2016, 40(3):557-560.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(2)

Article Metrics

Article views(2583) PDF downloads(45) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint