Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2017 Vol. 36, No. 5
Article Contents

Yuan-yuan WANG, Xiao-ming SONG, Yu-juan WEN, Adeel Muhammad, Yue-suo YANG, Wei SONG. Determination of Steroid Estrogens in Different Water Samples Using SPE-derivatization Coupled with GC-MS[J]. Rock and Mineral Analysis, 2017, 36(5): 519-528. doi: 10.15898/j.cnki.11-2131/td.201705310092
Citation: Yuan-yuan WANG, Xiao-ming SONG, Yu-juan WEN, Adeel Muhammad, Yue-suo YANG, Wei SONG. Determination of Steroid Estrogens in Different Water Samples Using SPE-derivatization Coupled with GC-MS[J]. Rock and Mineral Analysis, 2017, 36(5): 519-528. doi: 10.15898/j.cnki.11-2131/td.201705310092

Determination of Steroid Estrogens in Different Water Samples Using SPE-derivatization Coupled with GC-MS

More Information
  • In order to solve trace-level steroid estrogen pollution in groundwater and surface water, a SPE-GC-MS approach to determine five steroid estrogens (SEs), E1, 17α-E2, 17β-E2, EE2 and E3, by optimizing of solid phase extraction (SPE), derivatization conditions and the secondary purification process of complex samples has been developed. The results show that Oasis HLB column, ethyl acetate elution and derivatizing at 40℃ for 20 min can achieve the best results for extraction. Moreover, the Generik NAX column activated by methyl is suitable for the secondary purification of complex samples. The linear ranges of E1, 17α-E2, and 17β-E2 are 5-1000 ng/L, whereas those of EE2 and E3 are 10-1000 ng/L. The detection and quantitation limits are 2-3 ng/L and 6.5-10 ng/L, respectively. The standard solution added recoveries of water samples range from 80% to 120%. The relative standard deviations of daily peak areas in the SEs determination range from 6.8% to 10%. This method was used to determine the SEs pollution levels of waters from pond, river, groundwater and sewage treatment plant effluent and results show that this detection technique can be effectively applied to the identification and evaluation of estrogen risk in surface water and groundwater samples.
  • 加载中
  • [1] Chowdhury R R, Charpentier P A, Ray M B.Photode-gradation of 17β-estradiol in aquatic solution under solar irradiation:Kinetics and infiuencing water parameters[J].Journal of Photochemistry and Photobiology A:Chemistry, 2011, 219:67-75. doi: 10.1016/j.jphotochem.2011.01.019

    CrossRef Google Scholar

    [2] Chambers K B, Casey F X, Hakk H, et al.Potential bioactivity and association of 17β-estradiol with the dissolved and colloidal fractions of manure and soil[J].Science of the Total Environment, 2014, 494-495:58-64. doi: 10.1016/j.scitotenv.2014.06.121

    CrossRef Google Scholar

    [3] Zheng W, Zou Y, Li X, et al.Fate of estrogen conjugate 17α-estradiol-3-sulfate in dairy wastewater:Comparison of aerobic and anaerobic degradation and metabolite formation[J].Journal of Hazardous Materials, 2013, 258-259:109-115. doi: 10.1016/j.jhazmat.2013.04.038

    CrossRef Google Scholar

    [4] Liu Z H, Lu G N, Yin H, et al.Removal of natural estro-gens and their conjugates in municipal wastewater treatment plants:A critical review[J].Environment Science & Technology, 2015, 49:5288-5300.

    Google Scholar

    [5] 都韶婷, 金崇伟, 刘越.水体SEs污染现状研究进展[J].环境科学, 2013, 34(9):3358-3365.

    Google Scholar

    Du S T, Jin C W, Liu Y.A review on current situations of steroid estrogen in the water system[J].Environmental Science, 2013, 34(9):3358-3365.

    Google Scholar

    [6] Sun W L, Zhou K.Adsorption of 17β-estradiol by multi-walled carbon nanotubes in natural waters with or without aquatic colloids[J].Chemical Engineering Journal, 2014, 258:185-193. doi: 10.1016/j.cej.2014.07.087

    CrossRef Google Scholar

    [7] D'Alessio M, Vasudevan D, Lichwa J, et al.Fate and transport of selected estrogen compounds in Hawaii soils:Effect of soil type and macropores[J].Journal of Contaminant Hydrology, 2014, 166:1-10. doi: 10.1016/j.jconhyd.2014.07.006

    CrossRef Google Scholar

    [8] Combalbert S, Hernandez-raquet G.Occurrence, fate and biodegradation of estrogens in sewage and manure[J].Applied Microbiology and Biotechnology, 2010, 86(6):1671-1692. doi: 10.1007/s00253-010-2547-x

    CrossRef Google Scholar

    [9] Jiang J Q, Yin Q, Zhou J L, et al.Occurrence and treatment trials of endocrine disrupting chemicals (EDCs) in wastewaters[J].Chemosphere, 2005, 61(4):544-550. doi: 10.1016/j.chemosphere.2005.02.029

    CrossRef Google Scholar

    [10] Shrestha S L, Casey F X, Hakk H, et al.Fate and transformation of an estrogen conjugate and its metabolites in agricultural soils[J].Environmental Science & Technology, 2012, 46:11047-11053.

    Google Scholar

    [11] Bai X L, Shrestha S L, Francis X M, et al.Modeling coupled sorption and transformation of 17β-estradiol-17-sulfate in soil-water systems[J].Journal of Contaminant Hydrology, 2014, 168:17-24. doi: 10.1016/j.jconhyd.2014.09.001

    CrossRef Google Scholar

    [12] Lee J, Bartelthunt S L, Li Y, et al.Effect of 17β-estradiol on stability and mobility of TiO2 rutile nanoparticles[J].Science of the Total Environment, 2015, 511:195-202. doi: 10.1016/j.scitotenv.2014.12.054

    CrossRef Google Scholar

    [13] Goeppert N, Dror I, Berkowitz B.Fate and transport of free and conjugated estrogens during soil passage[J].Environmental Pollution, 2015, 206:80-87. doi: 10.1016/j.envpol.2015.06.024

    CrossRef Google Scholar

    [14] Singh R, Cabrera M L, Radcliffe D E, et al.Laccase me-diated transformation of 17β-estradiol in soil[J].Environmental Pollution, 2015, 197:28-35. doi: 10.1016/j.envpol.2014.11.023

    CrossRef Google Scholar

    [15] Postigo C.Synthetic organic compounds and their trans-formation products in groundwater:Occurrence, fate and mitigation[J].Science of the Total Environment, 2015, 503-504:32-47. doi: 10.1016/j.scitotenv.2014.06.019

    CrossRef Google Scholar

    [16] Schuh M C, Casey F X, Hakk H, et al.Effects of field-manure applications on stratified 17β-estradiol concentrations[J].Journal of Hazardous Materials, 2011, 192:748-752. doi: 10.1016/j.jhazmat.2011.05.080

    CrossRef Google Scholar

    [17] Lucci P, Núñ nez O, Galceran M T.Solid-phase extraction using molecularly imprinted polymer for selective extraction of natural and synthetic estrogens from aqueous samples[J].Journal of Chromatography A, 2011, 1218(30):4828-4833. doi: 10.1016/j.chroma.2011.02.007

    CrossRef Google Scholar

    [18] Zheng M, Wang L, Bi Y, et al.Improved method for analyzing the degradation of estrogens in water by solid-phase extraction coupled with ultra performance liquid chromatography-ultraviolet detection[J].Journal of Environmental Sciences, 2011, 23(4):693-698. doi: 10.1016/S1001-0742(10)60439-1

    CrossRef Google Scholar

    [19] Fredj S B, Nobbs J, Tizaoui C, et al.Removal of estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) from wastewater by liquid-liquid extraction[J].Chemical Engineering Journal, 2015, 262:417-426. doi: 10.1016/j.cej.2014.10.007

    CrossRef Google Scholar

    [20] Naing N N, Li S F Y, Lee H K.Evaluation of graphene-based sorbent in the determination of polar environmental contaminants in water by micro-solid phase extraction-high performance liquid chromatography[J].Journal of Chromatography A, 2016, 1427:29-36. doi: 10.1016/j.chroma.2015.12.012

    CrossRef Google Scholar

    [21] Wang J, Chen Z, Li Z, et al.Magnetic nanoparticles based dispersive micro-solid-phase extraction as a novel technique for the determination of estrogens in pork samples[J].Food Chemistry, 2016, 204:135-140. doi: 10.1016/j.foodchem.2016.02.016

    CrossRef Google Scholar

    [22] Luo S, Fang L, Wang X, et al.Determination of octyl-phenol and nonylphenol in aqueous sample using simultaneous derivatization and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry[J].Journal of Chromatography A, 2010, 1217(43):6762-6768. doi: 10.1016/j.chroma.2010.06.030

    CrossRef Google Scholar

    [23] Wang P, Xiao Y, Liu W, et al.Vortex-assisted hollow fibre liquid-phase microextraction technique combined with high performance liquid chromatography-diode array detection for the determination of oestrogens in milk samples[J].Food Chemistry, 2015, 172:385-390. doi: 10.1016/j.foodchem.2014.09.092

    CrossRef Google Scholar

    [24] González A, Avivar J, Cerdà V.Estrogens determination in wastewater samples by automatic in-syringe dispersive liquid-liquid microextraction prior silylation and gas chromatography[J].Journal of Chromatography A, 2015, 1413:1-8. doi: 10.1016/j.chroma.2015.08.031

    CrossRef Google Scholar

    [25] Manickum T, John W.The current preference for the immuno-analytical ELISA method for quantitation of steroid hormones (endocrine disruptor compounds) in wastewater in South Africa[J].Analytical and Bioanalytical Chemistry, 2015, 407(17):4949-4970. doi: 10.1007/s00216-015-8546-0

    CrossRef Google Scholar

    [26] 王硕, 陈双, 方国臻, 等.分子印迹技术在环境雌激素检测中的应用[J].食品与生物技术学报, 2008, 26(6):99-104.

    Google Scholar

    Wang S, Chen S, Fang G Z, et al.Determination of environmental estrogens by molecular imprinting technique[J].Journal of Food Science and Biotechnology, 2008, 26(6):99-104:99-104.

    Google Scholar

    [27] Bai X, Casey F X, Hakk H, et al.Sorption and degra-dation of 17β-estradiol-17-sulfate in sterilized soil-water systems[J].Chemosphere, 2015, 119:1322-1328. doi: 10.1016/j.chemosphere.2014.02.016

    CrossRef Google Scholar

    [28] Kumar V, Johnson A C, Nakada N, et al.De-conjugation behavior of conjugated estrogens in the raw sewage, activated sludge and river water[J].Journal of Hazardous Materials, 2012, 227-228:49-54. doi: 10.1016/j.jhazmat.2012.04.078

    CrossRef Google Scholar

    [29] Ronan J M, Mchugh B.A sensitive liquid chromatogra-phy/tandem mass spectrometry method for the determination of natural and synthetic steroid estrogens in seawater and marine biota, with a focus on proposed Water Framework Directive Environmental Quality Standards[J].Rapid Communications in Mass Spectrometry, 2013, 27:738-746. doi: 10.1002/rcm.6505

    CrossRef Google Scholar

    [30] Atapattu S N, Rosenfeld J M.Solid phase analytical derivatization of anthropogenic and natural phenolic estrogen mimics with pentafluoropyridine for gas chromatography-mass spectrometry[J].Journal of Chromatography A, 2011, 1218:9135-9141. doi: 10.1016/j.chroma.2011.10.060

    CrossRef Google Scholar

    [31] 余方, 潘学军, 王彬, 等.固相萃取-羟基衍生化-气相色谱/质谱联用测定滇池水体中酚类内分泌干扰物[J].环境化学, 2010, 29(4):744-748.

    Google Scholar

    Yu F, Pan X J, Wang B, et al.Determination of phenols in surface water of dianchi lake by solid extraction-hydroxyl derivatization-GC-MS[J].Environmental Chemistry, 2010, 29(4):744-748.

    Google Scholar

    [32] 廖涛, 吴晓翠, 王少华, 等.固相萃取-气相色谱/质谱联用法同时检测水体中9种环境雌激素[J].分析化学, 2013, 41(3):422-426.

    Google Scholar

    Liao T, Wu X C, Wang S H, et al.Simultaneous detection of nine kinds of estrogens in water by solid phase extraction coupled with gas chromatography-mass spectrometry[J].Chinese Journal of Analytical Chemistry, 2013, 41(3):422-426.

    Google Scholar

    [33] 黄成, 姜理英, 陈建孟, 等.固相萃取-衍生化气相色谱/质谱法测定制药厂污水中的环境雌激素[J].色谱, 2008, 26(5):618-621.

    Google Scholar

    Huang C, Jiang L Y, Chen J M, et al.Determination of environmental estrogens in pharmacy wastewater using solid-phase extraction-gas chromatography/mass spectrometry with derivatization[J].Chinese Journal of Chromatography, 2008, 26(5):618-621.

    Google Scholar

    [34] Quintana J B, Carpinteiro J, Rodríguez I, et al.Deter-mination of natural and synthetic estrogens in water by gas chromatography with mass spectrometric detection[J].Journal of Chromatography A, 2004, 1024:177-185. doi: 10.1016/j.chroma.2003.10.074

    CrossRef Google Scholar

    [35] Nie Y F, Qiang Z M, Zhang H Q, et al.Determination of endocrine-disrupting chemicals in the liquid and solid phases of activated sludge by solid phase extraction and gas chromatography-mass spectrometry[J].Journal of Chromatography A, 2009, 1216(42):7071-7080. doi: 10.1016/j.chroma.2009.08.064

    CrossRef Google Scholar

    [36] Liu R, Zhou J L, Wilding A.Simultaneous determination of endocrine disrupting phenolic compounds and steroids in water by solid-phase extraction-gas chromatography-mass spectrometry[J].Journal of Chromatography A, 2004, 1022(1):179-189.

    Google Scholar

    [37] 黄斌, 潘学军, 万幸, 等.固相萃取衍生化气相色谱/质谱测定水中类固醇类环境内分泌干扰物[J].分析化学, 2011, 39(4):449-454.

    Google Scholar

    Huang B, Pan X J, Wan X, et al.Simultaneous determination of steroid endocrine disrupting chemicals in water by solid phase extraction-derivatization-gas chromatography-mass spectrometry[J].Chinese Journal of Analytical Chemistry, 2011, 39(4):449-454.

    Google Scholar

    [38] 张宏, 毛炯, 孙成均, 等.气相色谱-质谱法测定尿及河底泥中的环境雌激素[J].色谱, 2003, 21(5):451-455.

    Google Scholar

    Zhang H, Mao J, Sun C J, et al.Determination of environmental estrogens in urine and bed mud by gas chromatography-mass spectrometry[J].Chinese Journal of Chromatography, 2003, 21(5):451-455.

    Google Scholar

    [39] Delaune P B, Jr M P.17β-estradiol in runoff as affected by various poultry litter application strategies[J].Science of the Total Environment, 2013, 444:26-31. doi: 10.1016/j.scitotenv.2012.11.054

    CrossRef Google Scholar

    [40] Zhang H, Shi J, Liu X, et al.Occurrence and removal of free estrogens, conjugated estrogens, and bisphenol A in manure treatment facilities in East China[J].Water Research, 2014, 58:248-257. doi: 10.1016/j.watres.2014.03.074

    CrossRef Google Scholar

    [41] Bevacqua C E, Rice C P, Torrents A, et al.Steroid hor-mones in biosolids and poultry litter:A comparison of potential environmental inputs[J].Science of the Total Environment, 2011, 409:2120-2126. doi: 10.1016/j.scitotenv.2011.02.007

    CrossRef Google Scholar

    [42] Caron E, Farenhorst A, Mcqueen R, et al.Mineralization of 17β-estradiol in 36 surface soils from Alberta, Canada[J].Agriculture, Ecosystems and Environment, 2010, 139:534-545. doi: 10.1016/j.agee.2010.09.014

    CrossRef Google Scholar

    [43] Lee B, Kullman S W, Yost E E, et al.Predicting charac-teristics of rainfall driven estrogen runoff and transport from swine AFO spray fields[J].Science of the Total Environment, 2015, 532:571-580. doi: 10.1016/j.scitotenv.2015.06.051

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(3)

Article Metrics

Article views(2161) PDF downloads(76) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint