2024 Vol. 33, No. 3
Article Contents

MA Wei, MA Jing-xuan, HONG Yang-bai-he, WEN Yun-qi. CLOSURE TIME OF NENJIANG OCEAN: Constrains from Zircon Geochronology and Geochemistry of the Early Permian Dawusu Monzogranite[J]. Geology and Resources, 2024, 33(3): 267-279. doi: 10.13686/j.cnki.dzyzy.2024.03.001
Citation: MA Wei, MA Jing-xuan, HONG Yang-bai-he, WEN Yun-qi. CLOSURE TIME OF NENJIANG OCEAN: Constrains from Zircon Geochronology and Geochemistry of the Early Permian Dawusu Monzogranite[J]. Geology and Resources, 2024, 33(3): 267-279. doi: 10.13686/j.cnki.dzyzy.2024.03.001

CLOSURE TIME OF NENJIANG OCEAN: Constrains from Zircon Geochronology and Geochemistry of the Early Permian Dawusu Monzogranite

More Information
  • Nenjiang Ocean is an important branch of the eastern section of Paleo-Asian Ocean, and its closure time is of great significance to define the tectonic evolution of the eastern section of Central Asian orogenic belt. The paper studies the petrology, chronology and geochemistry of the Permian rock mass in Dawusu area, northern Daxinganling Mountains, and discusses its tectonic background, which provides new evidence for the constrains on the closure time of Nenjiang Ocean and tectonic evolution in northern Daxinganling Mountains. The zircon U-Pb geochronology results show that the weighted mean age of monzogranite is 292±4 Ma, corresponding to Early Permian. The monzogranite belongs to weak peraluminous Ⅰ-type granite, with the REE distributions in right-inclined pattern, enriched LILEs (Rb, Ba and K) and depleted HFSEs(Nb, P and Ti), showing the characteristics of post-orogenic granites, which may be formed in extensional environment. Geochemically, the rock shows moderately negative Eu anomaly(δEu=0.46-0.47), with the Th/U ratio of 5.61-5.94, Nb/Ta ratio of 7.98-8.14, Ti/Zr ratio of 6.11-6.36, and low Mg# value(22-23), indicating that it was formed in the partial melting of lower crust, with a high degree of crystallization differentiation occurred during the ascent. Based on the published regional chronological data, the Carboniferous-Permian magmatism can be divided into three stages: 360-350 Ma, 345-292 Ma and 289-260 Ma. By comparing the spatiotemporal distribution, lithological assemblage and geochemical characteristics of magmatic rocks of each stage, it is concluded that the magmatic rocks of the three stages show a continuous change of subduction-postcollision-postorogenic extension, which records the closure process of Nenjiang Ocean. It is believed that Dawusu monzogranite is the product of the second-stage magmatism, formed in the extensional environment after the collision between Erguna-Xing'an block and Songnen block, which defines that Nenjiang Ocean should be closed at the end of Early Carboniferous.

  • 加载中
  • [1] Şengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435):299-307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [2] Li J Y. Permian geodynamic setting of Northeast China and adjacent regions:Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3/4):207-224.

    Google Scholar

    [3] 刘博,王一丁,文韵琪,等.额尔古纳地块韩家园子-富林地区中生代火成岩的成因及其对蒙古-鄂霍茨克洋演化的启示[J].地球科学, 2022, 47(9):3316-3333.

    Google Scholar

    Liu B, Wang Y D, Wen Y Q, et al. Geochronology and geochemistry of Mesozoic igneous rocks in the Hanjiayuanzi-Fulin area of the Erguna Massif:Constraints on the tectonic evolution of the Mongol-Okhotsk Ocean[J]. Earth Science, 2022, 47(9):3316-3333.

    Google Scholar

    [4] Liu Y J, Li W M, Feng Z Q, et al. A review of the Paleozoic tectonics in the eastern part of Central Asian orogenic belt[J]. Gondwana Research, 2017, 43:123-148. doi: 10.1016/j.gr.2016.03.013

    CrossRef Google Scholar

    [5] 刘永江,冯志强,蒋立伟,等.中国东北地区蛇绿岩[J].岩石学报, 2019, 35(10):3017-3047.

    Google Scholar

    Liu Y J, Feng Z Q, Jiang L W, et al. Ophiolite in the eastern Central Asian Orogenic Belt, NE China[J]. Acta Petrologica Sinica, 2019, 35(10):3017-3047.

    Google Scholar

    [6] 葛文春,吴福元,周长勇,等.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J].岩石学报, 2005, 21(3):749-762.

    Google Scholar

    Ge W C, Wu F Y, Zhou C Y, et al. Zircon U-Pb ages and its significance of the Mesozoic granites in the Wulanhaote region, central Da Hinggan Mountain[J]. Acta Petrologica Sinica, 2005, 21(3):749-762.

    Google Scholar

    [7] 周传芳,杨华本,李向文,等.大兴安岭北段新林地区晚石炭世花岗岩的岩石成因及地质意义[J].吉林大学学报(地球科学版), 2020, 50(1):97-111.

    Google Scholar

    Zhou C F, Yang H B, Li X W, et al. Petrogenesis of Late Carboniferous granitic plutons in Xinlin area, northern Great Xing'an Range and their geological significance[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(1):97-111.

    Google Scholar

    [8] 杨晓平,钟辉,杨雅军,等.大兴安岭地区古生代构造格架重建:来自俯冲增生杂岩研究进展[J].地学前缘, 2022, 29(2):94-114.

    Google Scholar

    Yang X P, Zhong H, Yang Y J, et al. Research progress on the subduction-accretion complex:Reconstruction of the tectonic framework of the Great Xing'an Range[J]. Earth Science Frontiers, 2022, 29(2):94-114.

    Google Scholar

    [9] Liu B, Chen J F, Han B F, et al. Geochronological and geochemical evidence for a Late Ordovician to Silurian arc-back-arc system in the northern Great Xing'an Range, NE China[J]. Geoscience Frontiers, 2021, 12(1):131-145. doi: 10.1016/j.gsf.2020.07.002

    CrossRef Google Scholar

    [10] 吴宜翰,刘博,韩宝福,等.大兴安岭北部兴隆地区寒武纪侵入岩锆石U-Pb年代学、地球化学及其构造意义[J].地球科学, 2019, 44(10):3346-3360.

    Google Scholar

    Wu Y H, Liu B, Han B F, et al. Zircon U-Pb geochronology and geochemistry of Cambrian plutons in Xinglong area of northern Da-Hinggan Mountains:Implications for tectonic evolution[J]. Earth Science, 2019, 44(10):3346-3360.

    Google Scholar

    [11] 徐备,赵盼,鲍庆中,等.兴蒙造山带前中生代构造单元划分初探[J].岩石学报, 2014, 30(7):1841-1857.

    Google Scholar

    Xu B, Zhao P, Bao Q Z, et al. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt (XMOB)[J]. Acta Petrologica Sinica, 2014, 30(7):1841-1857.

    Google Scholar

    [12] 隋振民,葛文春,徐学纯,等.大兴安岭十二站晚古生代后造山花岗岩的特征及其地质意义[J].岩石学报, 2009, 25(10):2679-2686.

    Google Scholar

    Sui Z M, Ge W C, Xu X C, et al. Characteristics and geological implications of the Late Paleozoic post orogenic Shierzhan granite in the Great Xing'an Range[J]. Acta Petrologica Sinica, 2009, 25(10):2679-2686.

    Google Scholar

    [13] 崔芳华,郑常青,徐学纯,等.大兴安岭全胜林场地区晚石炭世岩浆活动研究:对兴安地块与松嫩地块拼合时间的限定[J].地质学报, 2013, 87(9):1247-1263.

    Google Scholar

    Cui F H, Zheng C Q, Xu X C, et al. Late Carboniferous magmatic activities in the Quanshenglinchang area, Great Xing'an Range:Constrains on the timing of amalgamation between Xing'an and Songnen massifs[J]. Acta Geologica Sinica, 2013, 87(9):1247-1263.

    Google Scholar

    [14] Li D X, Zheng C Q, Liang C Y, et al. Formation age, geochemical characteristics and petrogenesis of syenogranite in Chaihe area, central Daxingan Mountains:Constraints on Late Carboniferous evolution of the Xing'an and Songnen blocks[J]. Turkish Journal of Earth Sciences, 2021, 30(4):489-515. doi: 10.3906/yer-2103-4

    CrossRef Google Scholar

    [15] Miao L C, Fan W M, Zhang F Q, et al. Zircon SHRIMP geochronology of the Xinkailing-Kele complex in the northwestern Lesser Xing'an Range, and its geological implications[J]. Chinese Science Bulletin, 2004, 49(2):201-209. doi: 10.1360/03wd0316

    CrossRef Google Scholar

    [16] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1-30. doi: 10.1016/j.jseaes.2010.11.014

    CrossRef Google Scholar

    [17] 黑龙江省地质矿产局.中华人民共和国地质矿产部地质专报(一)第33号:区域地质,黑龙江省区域地质志[M].北京:地质出版社, 1993:1-734.

    Google Scholar

    Heilongjiang Bureau of Geology and Mineral Resources. Geological memoirs of the Ministry of Geology and Mineral Resources, People's Republic of China:Regional geology of Heilongjiang Province[M]. Beijing:Geological Publishing House, 1993:1-734.(in Chinese)

    Google Scholar

    [18] 刘玉,孙加鹏,王献忠,等.大兴安岭北部新林地区大乌苏混杂岩锆石U-Pb年代学、地球化学及其地质意义[J].吉林大学学报(地球科学版), 2016, 46(5):1383-1405.

    Google Scholar

    Liu Y, Sun J P, Wang X Z, et al. Dawusu complex of Xinlin district in Northern Greater Hinggan Mountains zircon U-Pb chronology, petrogeochemistry, and its geological implication[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(5):1383-1405.

    Google Scholar

    [19] Feng Z Q, Jia J, Liu Y J, et al. Geochronology and geochemistry of the Carboniferous magmatism in the northern Great Xing'an Range, NE China:Constraints on the timing of amalgamation of Xing'an and Songnen blocks[J]. Journal of Asian Earth Sciences, 2015, 113:411-426. doi: 10.1016/j.jseaes.2014.12.017

    CrossRef Google Scholar

    [20] 冯志强,刘永江,温泉波,等.大兴安岭北段塔源地区~330 Ma变辉长岩-花岗岩的岩石成因及构造意义[J].岩石学报, 2014, 30(7):1982-1994.

    Google Scholar

    Feng Z Q, Liu Y J, Wen Q B, et al. Petrogenesis of~330 Ma meta-gabbro-granite from the Tayuan area in the northern segment of the Da Xing'an Mts and its tectonic implication[J]. Acta Petrologica Sinica, 2014, 30(7):1982-1994.

    Google Scholar

    [21] 乔牡冬,孙加鹏,李宇菡,等.大兴安岭新林区中生代流纹岩年代学、地球化学特征及其地质意义[J].地质与资源, 2018, 27(4):324-336.

    Google Scholar

    Qiao M D, Sun J P, Li Y H, et al. Chronology, geochemistry and geological implication of the Mesozoic rhyolites in Xinlin area, Daxinganling Mountains[J]. Geology and Resources, 2018, 27(4):324-336.

    Google Scholar

    [22] Le Bas M J, Le Maitre R W, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 1986, 27(3):745-750. doi: 10.1093/petrology/27.3.745

    CrossRef Google Scholar

    [23] Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5):523-548. doi: 10.1139/e71-055

    CrossRef Google Scholar

    [24] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1):63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [25] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. GSA Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [26] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [27] 李成禄,曲晖,赵忠海,等.黑龙江霍龙门地区早石炭世花岗岩的锆石U-Pb年龄、地球化学特征及构造意义[J].中国地质, 2013, 40(3):859-868.

    Google Scholar

    Li C L, Qu H, Zhao Z H, et al. Zircon U-Pb ages, geochemical characteristics and tectonic implications of Early Carboniferous granites in Huolongmen area, Heilongjiang Province[J]. Geology in China, 2013, 40(3):859-868.

    Google Scholar

    [28] 张影.大兴安岭中部石炭纪侵入岩的年代学、地球化学及其地球动力学意义[D].长春:吉林大学, 2017.

    Google Scholar

    Zhang Y. Geochronology and geochemistry of carboniferous intrusions in the central Great Xing'an Range and its tectonic implications[D]. Changchun:Jilin University, 2017.

    Google Scholar

    [29] Dong Y, Ge W C, Zhao G C, et al. Petrogenesis and tectonic setting of the Late Paleozoic Xing'an complex in the northern Great Xing'an Range, NE China:Constraints from geochronology, geochemistry and zircon Hf isotopes[J]. Journal of Asian Earth Sciences, 2016, 115:228-246. doi: 10.1016/j.jseaes.2015.09.031

    CrossRef Google Scholar

    [30] 周长勇,吴福元,葛文春,等.大兴安岭北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因[J].岩石学报, 2005, 21(3):763-775.

    Google Scholar

    Zhou C Y, Wu F Y, Ge W C, et al. Age, geochemistry and petrogenesis of the cumulate gabbro in Tahe, northern Da Hinggan Mountain[J]. Acta Petrologica Sinica, 2005, 21(3):763-775.

    Google Scholar

    [31] Sun W, Chi X G, Zhao Z, et al. Zircon geochronology constraints on the age and nature of'Precambrian metamorphic rocks'in the Xing'an block of Northeast China[J]. International Geology Review, 2014, 56(6):672-694. doi: 10.1080/00206814.2014.883183

    CrossRef Google Scholar

    [32] 赵芝,迟效国,潘世语,等.小兴安岭西北部石炭纪地层火山岩的锆石LA-ICP-MS U-Pb年代学及其地质意义[J].岩石学报, 2010, 26(8):2452-2464.

    Google Scholar

    Zhao Z, Chi X G, Pan S Y, et al. Zircon U-Pb LA-ICP-MS dating of carboniferous volcanics and its geological significance in the northwestern Lesser Xing'an Range[J]. Acta Petrologica Sinica, 2010, 26(8):2452-2464.

    Google Scholar

    [33] 刘宾强.大兴安岭北段嫩江-黑河构造带古生代演化研究[D].长春:吉林大学, 2016.

    Google Scholar

    Liu B Q. A preliminary study on the Paleozoic evolution of the Nenjiang-Heihe tectonic belt in the northern part of Great Xing'an Range[D]. Changchun:Jilin University, 2016.

    Google Scholar

    [34] 汪岩,付俊彧,杨帆,等.嫩江黑河构造带收缩与伸展源自晚古生代花岗岩类的地球化学证据[J].吉林大学学报(地球科学版), 2015, 45(2):374-388.

    Google Scholar

    Wang Y, Fu J Y, Yang F, et al. Contraction and extension in Nenjiang-Heihe tectonic belt:Evidence from the Late Paleozoic granitoid geochemistry[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(2):374-388.

    Google Scholar

    [35] 张磊,吕新彪,刘阁,等.兴蒙造山带东段大陆弧后A型花岗岩特征与成因[J].中国地质, 2013, 40(3):869-884.

    Google Scholar

    Zhang L, Lv X B, Liu G, et al. Characteristics and genesis of continental back-arc A-type granites in the eastern segment of the Inner Mongolia-Da Hinggan Mountains orogenic belt[J]. Geology in China, 2013, 40(3):869-884.

    Google Scholar

    [36] 张彦龙,葛文春,高妍,等.龙镇地区花岗岩锆石U-Pb年龄和Hf同位素及地质意义[J].岩石学报, 2010, 26(4):1059-1073.

    Google Scholar

    Zhang Y L, Ge W C, Gao Y, et al. Zircon U-Pb ages and Hf isotopes of granites in Longzhen area and their geological implications[J]. Acta Petrologica Sinica, 2010, 26(4):1059-1073.

    Google Scholar

    [37] 曲晖,李成禄,赵忠海,等.大兴安岭东北部多宝山地区花岗岩锆石U-Pb年龄及岩石地球化学特征[J].中国地质, 2011, 38(2):292-300.

    Google Scholar

    Qv H, Li C L, Zhao Z H, et al. Zircon U-Pb ages and geochemical characteristics of the granites in Duobaoshan area, northeast Da Hinggan Mountains[J]. Geology in China, 2011, 38(2):292-300.

    Google Scholar

    [38] Wu F Y, Sun D Y, Li H M, et al. A-type granites in Northeastern China:Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1/2):143-173.

    Google Scholar

    [39] 孙德有,吴福元,李惠民,等.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J].科学通报, 2000, 45(20):2217-2222.

    Google Scholar

    Sun D Y, Wu F Y, Li H M, et al. Emplacement age of the postorogenic A-type granites in northwestern Lesser Xing'an Ranges, and its relationship to the eastward extension of Suolushan-Hegenshan-Zhalaite collisional suture zone[J]. Chinese Science Bulletin, 2001, 46(5):427-432.

    Google Scholar

    [40] 施光海,苗来成,张福勤,等.内蒙古锡林浩特A型花岗岩的时代及区域构造意义[J].科学通报, 2004, 49(4):384-389.

    Google Scholar

    Shi G H, Miao L C, Zhang F Q, et al. Emplacement age and tectonic implications of the Xilinhot A-type granite in Inner Mongolia, China[J]. Chinese Science Bulletin, 2004, 49(7):723-729.

    Google Scholar

    [41] Whalen J B, Currie K L, Chappell B W. A-type granites:Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4):407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [42] Rudnick R L, Shan G. Composition of the continental crust[C]//Holland H D, Turekian K K. Treatise on Geochemistry. Elsevier Science Ltd, 2014, 4:1-64.

    Google Scholar

    [43] Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3/4):347-359.

    Google Scholar

    [44] Wedepohl K H. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 1995, 59(7):1217-1232. doi: 10.1016/0016-7037(95)00038-2

    CrossRef Google Scholar

    [45] Lassiter J C, Depaolo D J. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts:Chemical and isotopic constraints[C]//Mahoney J J, Coffin M F. Large igneous provinces:Continental, oceanic, and planetary flood volcanism. Washington:American Geophysical Union, 1997.

    Google Scholar

    [46] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [47] Gill R. Igneous rocks and processes:A practical guide[M]. Hoboken:Wiley, 2010.

    Google Scholar

    [48] Ma Y F, Liu Y J, Wang Y, et al. Geochronology and geochemistry of the Carboniferous felsic rocks in the central Great Xing'an Range, NE China:Implications for the amalgamation history of Xing'an and Songliao-Xilinhot blocks[J]. Geological Journal, 2019, 54(1):482-513. doi: 10.1002/gj.3198

    CrossRef Google Scholar

    [49] 徐备, Charvet J,张福勤.内蒙古北部苏尼特左旗蓝片岩岩石学和年代学研究[J].地质科学, 2001, 36(4):424-434.

    Google Scholar

    Xu B, Charvet J, Zhang F Q. Primary study on petrology and geochronology of blueschists in Sunitezuoqi, northern Inner Mongolia[J]. Chinese Journal of Geology, 2001, 36(4):424-434.

    Google Scholar

    [50] 刘兵.大兴安岭地区晚古生代构造演化研究[D].长春:吉林大学, 2014.

    Google Scholar

    Liu B. Study on the Late Paleozoic tectonic evolution of the Great Xing'an Ranges[D]. Changchun:Jilin University, 2014.

    Google Scholar

    [51] Li Y, Xu W L, Wang F, et al. Geochronology and geochemistry of Late Paleozoic volcanic rocks on the western margin of the Songnen-Zhangguangcai Range massif, NE China:Implications for the amalgamation history of the Xing'an and Songnen-Zhangguangcai Range massifs[J]. Lithos, 2014, 205:394-410. doi: 10.1016/j.lithos.2014.07.008

    CrossRef Google Scholar

    [52] 张超,吴新伟,刘永江,等.大兴安岭中段早二叠世A型花岗岩成因及对扎兰屯地区构造演化的制约[J].岩石学报, 2020, 36(4):1091-1106.

    Google Scholar

    Zhang C, Wu X W, Liu Y J, et al. Genesis of Early Permian A-type granites in the middle of the Great Xing'an Range and constraints on tectonic evolution of the Zhalantun area[J]. Acta Petrologica Sinica, 2020, 36(4):1091-1106.

    Google Scholar

    [53] 郭奎城,张文龙,杨晓平,等.黑河市五道沟地区早二叠世A型花岗岩成因[J].吉林大学学报(地球科学版), 2011, 41(4):1077-1083.

    Google Scholar

    Guo K C, Zhang W L, Yang X P, et al. Origin of Early Permian A-type granite in the Wudaogou area, Heihe City[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(4):1077-1083.

    Google Scholar

    [54] 佘宏全,李进文,向安平,等.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J].岩石学报, 2012, 28(2):571-594.

    Google Scholar

    She H Q, Li J W, Xiang A P, et al. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution[J]. Acta Petrologica Sinica, 2012, 28(2):571-594.

    Google Scholar

    [55] Feng Z Q, Liu Y J, Li L, et al. Subduction, accretion, and collision during the Neoproterozoic-Cambrian orogeny in the Great Xing'an Range, NE China:Insights from geochemistry and geochronology of the Ali River ophiolitic mélange and arc-type granodiorites[J]. Precambrian Research, 2018, 311:117-135.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(405) PDF downloads(24) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint