Citation: | ZHANG Hong-wen, PING Xian-quan, HUANG Wei, LIU Jin-ye, GAO Bo, AI Lei, WANG Gang, SUN Yan-qiu. GEOCHEMICAL CHARACTERISTICS AND TECTONIC ENVIRONMENT OF THE EARLY JURASSIC A-TYPE GRANITES IN YICHUN AREA, HEILONGJIANG PROVINCE[J]. Geology and Resources, 2024, 33(3): 280-290. doi: 10.13686/j.cnki.dzyzy.2024.03.002 |
The Yichun area of Heilongjiang Province is tectonically located in the Xiaoxinganling-Zhangguangcailing arc-basin system in the eastern Xingan-Mongolian orogenic belt, with multiple-stage magmatic activities occurred in Mesozoic, which has recorded the tectonic evolution of arc-basin system. The paper studies in detail the petrology, geochemistry and chronology of the Mesozoic granites in Baihuaqingniandui area of northern Yichun. The results show that the Mesozoic granites exposed in the area mainly include fine-medium-grained syenogranite and porphyritic monzogranite. The LA-ICP-MS zircon U-Pb dating yields the age of 190.6±1.7 Ma, indicating the fine-medium-grained syenogranite was formed in the Early Jurassic. Lithogeochemically, the granites are characterized by high Si, rich in alkali, poor in Mg, Ca, P and Ti, with the A/CNK value of 1.05-1.15, belonging to peraluminous, high potassium calc-alkaline series, and depletion of HFSEs (Nb, Ti and P) and LILEs (Ba and Sr), and enrichment of elements such as Rb, K, Th and Hf. The REE patterns show asymmetrically right-dipping type, with obvious negative Eu anomaly. These geochemical characteristics reveal that the Early Jurassic granites in the area are typically of A2-type, formed in the post-orogenic extensional tectonic setting. Combined with the magmatic activities and tectonic events in Xiaoxinganling Mountains, it is believed that the Early Jurassic magmatic emplacement in Yichun area may have occurred under the post-orogenic extensional tectonic background caused by the westward subduction of paleo-Pacific Plate.
[1] | Zhou J B, Cao J L, Wilde S A, et al. Paleo-Pacific subduction-accretion: Evidence from geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China[J]. Tectonics, 2014, 33(12): 2444-2466. doi: 10.1002/2014TC003637 |
[2] | Zhang X Z, Guo Y, Zhou J B, et al. Late Paleozoic-Early Mesozoic tectonic evolution in the east margin of the Jiamusi massif, eastern Northeastern China[J]. Russian Journal of Pacific Geology, 2015, 9(1): 1-10. doi: 10.1134/S181971401501008X |
[3] | 吴福元, 孙德有, 林强. 东北地区显生宙花岗岩的成因与地壳增生[J]. 岩石学报, 1999, 15(2): 181-189. Wu F Y, Sun D Y, Lin Q. Petrogenesis of the Phanerozoic granites and crustal growth in Northeast China[J]. Acta Petrologica Sinica, 1999, 15(2): 181-189. |
[4] | 陈会军, 付俊彧, 钱程, 等. 东北地区前中生代花岗岩类年龄与时空分布[J]. 地质通报, 2021, 40(6): 827-844. Chen H J, Fu J Y, Qian C, et al. Chronology and spatiotemporal distribution of pre-Mesozoic granites in Northeast China[J]. Geological Bulletin of China, 2021, 40(6): 827-844. |
[5] | 王涛. 花岗岩混合成因研究及大陆动力学意义[J]. 岩石学报, 2000, 16(2): 161-168. Wang T. Origin of hybrid granitoids and the implications for continental dynamics[J]. Acta Petrologica Sinica, 2000, 16(2): 161-168. |
[6] | 张超, 吴新伟, 刘永江, 等. 大兴安岭中段早二叠世A型花岗岩成因及对扎兰屯地区构造演化的制约[J]. 岩石学报, 2020, 36(4): 1091-1106. Zhang C, Wu X W, Liu Y J, et al. Genesis of Early Permian A-type granites in the middle of the Great Xing'an Range and constraints on tectonic evolution of the Zhalantun area[J]. Acta Petrologica Sinica, 2020, 36(4): 1091-1106. |
[7] | 刘宇崴, 杜兵盈, 张铁安, 等. 大兴安岭环二库地区新元古代晚期花岗岩发现及其地质意义[J]. 地质与资源, 2017, 26(5): 453-459. Liu Y W, Du B Y, Zhang T A, et al. Discovery and geological significance of the Late Neoproterozoic granite in Huanerku, Daxinganling region[J]. Geology and Resources, 2017, 26(5): 453-459. |
[8] | 陈卓, 李向文, 张胜江, 等. 黑龙江十五里桥金矿龙江组火山岩地球化学特征及构造背景分析[J]. 地质与资源, 2019, 28(5): 413-422. Chen Z, Li X W, Zhang S J, et al. Geochemistry and tectonic setting of the volcanic rocks of Longjiang Formation in Shiwuliqiao Gold Deposit, Heilongjiang Province[J]. Geology and resources, 2019, 28(5): 413-422. |
[9] | 田子龙, 赵庆英, 李子昊, 等. 内蒙古突泉县姜家屯侏罗纪花岗闪长岩年代学及地球化学特征[J]. 地质与资源, 2017, 26(6): 542-551. Tian Z L, Zhao Q Y, Li Z H, et al. Geochronology and geochemistry of the Jurassic granodiorite in Jiangjiatun, Tuquan County of Inner Mongolia[J]. Geology and Resources, 2017, 26(6): 542-551. |
[10] | 张龙, 任传涛, 陈桂虎, 等. 物化探综合找矿方法在吉林省汪清县复兴地区勘查中的应用[J]. 地质与资源, 2022, 31(1): 68-75. Zhang L, Ren C T, Chen G H, et al. Application of integrated geophysical and geochemical prospecting methods in Fuxing area, Jilin Province[J]. Geology and Resources, 2022, 31(1): 68-75. |
[11] | 曾振, 孙雷, 张兴洲, 等. 饶河杂岩中枕状玄武岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 地质与资源, 2019, 28(2): 119-127. Zeng Z, Sun L, Zhang X Z, et al. Zircon U-Pb chronology and geochemistry of the pillow basalts from Raohe complex: Geological implications[J]. Geology and Resources, 2019, 28(2): 119-127. |
[12] | 葛茂卉, 张进江, 刘恺. 小兴安岭-张广才岭铁力地区侏罗纪辉绿岩年代学、地球化学、锆石Hf同位素特征及其构造意义[J]. 岩石学报, 2020, 36(3): 726-740. Ge M H, Zhang J J, Liu K. Geochronology, geochemistry and zircon Hf isotope of the Jurassic diabase from the Tieli area, Lesser Xing'an-Zhangguangcai Range, and its geological implications[J]. Acta Petrologica Sinica, 2020, 36(3): 726-740. |
[13] | 张立仕, 孙丰月, 李碧乐, 等. 小兴安岭-张广才岭成矿带福安堡钼矿区花岗岩类的岩石成因和构造背景: 元素地球化学、锆石U-Pb年龄和Sr-Nd-Hf同位素约束[J]. 地质学报, 2021, 95(8): 2471-2492. Zhang L S, Sun F Y, Li B L, et al. Petrogenesis and tectonic setting of granitoids in the Fu'anpu molybdenum deposit, Lesser Xing'an-Zhangguangcai Range metallogenic belt: Constraints from element geochemistry, zircon U-Pb geochronology and Sr-Nd-Hf isotopes[J]. Acta Geologica Sinica, 2021, 95(8): 2471-2492. |
[14] | 李仰春, 韩振哲, 吴淦国, 等. 黑龙江伊春地区早中生代花岗岩成矿作用及成矿能力差异性探讨[J]. 地质与勘探, 2013, 49(1): 28-38. Li Y C, Han Z Z, Wu G G, et al. Metallogenesis and metallogenic differences of the Early Mesozoic granites in the Yichun area, Heilongjiang Province[J]. Geology and Exploration, 2013, 49(1): 28-38. |
[15] | 刘英才, 付俊彧, 赵春荆, 等. 《东北地区1: 150万大地构造相图》的编制[J]. 地质与资源, 2020, 29(1): 1-6. Liu Y C, Fu J Y, Zhao C J, et al. Compilation of The 1: 1500000 Tectonic Facies Map of Northeast China[J]. Geology and Resources, 2020, 29(1): 1-6. |
[16] | 许文良, 王旖旎, 王枫, 等. 西太平洋俯冲带的演变: 来自东北亚陆缘增生杂岩的制约[J]. 地质论评, 2022, 68(1): 1-17. Xu W L, Wang Y N, Wang F, et al. Evolution of western Pacific subduction zones: Constraints from accretionary complexes in NE Asian continental margin[J]. Geological Review, 2022, 68(1): 1-17. |
[17] | 王粉丽, 王海鹏, 鲁红峰. 大兴安岭北上其地区晚石炭世花岗岩类LA-ICP-MS锆石U-Pb测年及地质意义[J]. 西北地质, 2017, 50(4): 51-58. Wang F L, Wang H P, Lu H F. LA-ICP-MS zircon U-Pb ages of Late Carboniferous granites from Shangqi area in Great Xing'an Range and its significance[J]. Northwestern Geology, 2017, 50(4): 51-58. |
[18] | Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571. |
[19] | Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 469-500. doi: 10.2113/0530469 |
[20] | Chen F, Hegner E, Todt W. Zircon ages and Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany: Evidence for a Cambrian magmatic arc[J]. International Journal of Earth Sciences, 2000, 88(4): 791-802. doi: 10.1007/s005310050306 |
[21] | Chen F, Siebel W, Satir M, et al. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone[J]. International Journal of Earth Sciences, 2002, 91(3): 469-481. doi: 10.1007/s00531-001-0239-6 |
[22] | 李超, 孙国胜, 杨乃峰, 等. 小兴安岭石林林场A型花岗岩地球化学特征及构造环境[J]. 世界地质, 2013, 32(1): 1-7. Li C, Sun G S, Yang N F, et al. Geochemical characteristics and tectonic setting of A-type granite in Shilin forestry center in Xiaoxing'anling[J]. Global Geology, 2013, 32(1): 1-7. |
[23] | 徐美君, 许文良, 王枫, 等. 小兴安岭中部早侏罗世花岗质岩石的年代学与地球化学及其构造意义[J]. 岩石学报, 2013, 29(2): 354-368. Xu M J, Xu W L, Wang F, et al. Geochronology and geochemistry of the Early Jurassic granitoids in the central Lesser Xing'an Range, NE China and its tectonic implications[J]. Acta Petrologica Sinica, 2013, 29(2): 354-368. |
[24] | 姜浩杰. 伊春西部新第二林场-跃进林场中生代花岗岩特征及地质意义[D]. 成都: 成都理工大学, 2017. Jiang H J. Characteristics and geological significance of the Mesozoic granites of the New Second Forest Farm-Yuejin Forest Farm in Western Yichun[D]. Chengdu: Chengdu University of Technology, 2017. |
[25] | 杨长江, 王亚春. 小兴安岭东南部伊春中生代花岗岩的锆石U-Pb测年及其地质意义[J]. 吉林地质, 2010, 29(4): 1-5, 31. Yang C J, Wang Y C. LA-ICP-MS zircon U-Pb age and the geological significance for Yichun Mesozoic granites in southeast Lesser Khingan Range[J]. Jilin Geology, 2010, 29(4): 1-5, 31. |
[26] | 李碧乐, 孙永刚, 陈广俊, 等. 小兴安岭东安金矿区细粒正长花岗岩U-Pb年龄、岩石地球化学、Hf同位素组成及地质意义[J]. 地球科学, 2016, 41(1): 1-16. Li B L, Sun Y G, Chen G J, et al. Zircon U-Pb geochronology, geochemistry and Hf isotopic composition and its geological implication of the fine-grained syenogranite in Dong'an goldfield from the Lesser Xing'an Mountains[J]. Earth Science, 2016, 41(1): 1-16. |
[27] | Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971(8): 523-548. |
[28] | Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58: 63-81. doi: 10.1007/BF00384745 |
[29] | 尹志刚, 宫兆民, 王春生, 等. 小兴安岭平顶山一带早侏罗世花岗岩类年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(1): 107-125. Yin Z G, Gong Z M, Wang C S, et al. Chronological, geochemical characteristics and geological significance of Early Jurassic granites in Pingdingshan area of Lesser Xing'an Range[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(1): 107-125. |
[30] | Xu W L, Ji W Q, Pei F P, et al. Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China: Chronology, geochemistry, and tectonic implications[J]. Journal of Asian Earth Sciences, 2009, 34(3): 392-402. doi: 10.1016/j.jseaes.2008.07.001 |
[31] | Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202 |
[32] | 李永军, 杨高学, 吴宏恩, 等. 东准噶尔贝勒库都克铝质A型花岗岩的厘定及意义[J]. 岩石矿物学杂志, 2009, 28(1): 17-25. Li Y J, Yang G X. Wu H E, et al. The determination of Beilekuduke aluminous A-type granites in East Junggar, Xinjiang[J]. Acta Petrologica et Mineralogica, 2009, 28(1): 17-25. |
[33] | 邱检生, 王德滋, 刘洪, 等. 大别造山带北缘后碰撞富钾火山岩: 地球化学与岩石成因[J]. 岩石学报, 2002, 18(3): 319-330. Qiu J S, Wang D Z, Liu H, et al. Post-collisional potash-rich volcanic rocks in the north margin of Dabie orogenic belt: Geochemistry and petrogenesis[J]. Acta Petrologica Sinica, 2002, 18(3): 319-330. |
[34] | 韩振哲. 小兴安岭东南段早中生代花岗岩类时空演化特征与多金属成矿[D]. 北京: 中国地质大学(北京), 2011. Han Z Z. Characteristics of temporal and spatial evolution and polymetallic mineralization of Early Mesozoic granites in southeastern Xiaoxin'an Mountains[D]. Beijing: China University of Geosciences (Beijing), 2011 |
[35] | Sylvester P J. Post-collisional alkaline granites[J]. The Journal of Geology, 1989, 97(3): 261-280. doi: 10.1086/629302 |
[36] | Dawei H, Shiguang W, Baofu H, et al. Post-orogenic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere[J]. Journal of Southeast Asian Earth Sciences, 1996, 13(1): 13-27. doi: 10.1016/0743-9547(96)00002-5 |
[37] | Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 |
[38] | 张旗, 王焰, 李承东, 等. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 2006, 22(9): 2249-2269. Zhang Q, Wang Y, Li C D, et al. Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica, 2006, 22(9): 2249-2269. |
[39] | 李金超, 国显正, 孔会磊, 等. 东昆仑浪麦滩地区A型花岗岩年代学、地球化学特征及其地质意义[J]. 地质学报, 2021, 95(5): 1508-1522. Li J C, Guo X Z, Kong H L, et al. Geochronology, geochemical characteristics and geological significance of A-type granite from the Langmaitan area, East Kunlun[J]. Acta Geologica Sinica, 2021, 95(5): 1508-1522. |
[40] | 莫宣学. 岩浆作用与青藏高原演化[J]. 高校地质学报, 2011, 17(3): 351-367. Mo X X. Magmatism and evolution of the Tibetan Plateau[J]. Geological Journal of China Universities, 2011, 17(3): 351-367. |
[41] | 郑永飞, 陈伊翔. 大陆俯冲带壳幔相互作用[J]. 地球科学, 2019, 44(12): 3961-3983. Zheng Y F, Chen Y X. Crust-mantle interaction in continental subduction zones[J]. Earth Science, 2019, 44(12): 3961-3983. |
[42] | 王涛, 王晓霞, 郭磊, 等. 花岗岩与大地构造[J]. 岩石学报, 2017, 33(5): 1459-1478. Wang T, Wang X X, Guo L, et al. Granitoid and tectonics[J]. Acta Petrologica Sinica, 2017, 33(5): 1459-1478. |
[43] | 张薇洁. A型花岗岩成因的热力学模拟[D]. 北京: 中国地质大学(北京), 2020. Zhang W J. Thermodynamic modeling of the origin of A-type granites[D]. Beijing: China University of Geosciences (Beijing), 2020. |
[44] | 王金芳, 李英杰, 李红阳, 等. 内蒙古西乌旗德勒哈达早白垩世A型花岗岩形成时代: 锆石U-Pb定年证据[J]. 中国地质, 2018, 45(1): 197-198. Wang J F, Li Y J, Li H Y, et al. Formation age of the Delehada Early Cretaceous A-type granite in Xiwu Banner, Inner Mongolia: evidence from zircon U-Pb chronology[J]. Geology in China, 2018, 45(1): 197-198. |
[45] | 王存智, 黄志忠, 赵希林, 等. 下扬子地区姚村A型花岗岩年代学、地球化学特征及岩石成因[J]. 中国地质, 2021, 48(2): 549-563. Wang C Z, Huang Z Z, Zhao X L, et al. Geochronology, geochemistry and petrogenesis of Early Cretaceous Yaocun A-type granite in the Lower Yangtze Region[J]. Geology in China, 2021, 48(2): 549-563. |
[46] | 尚永明, 李小伟, 祝新友, 等. 内蒙古赤峰五十家子岩体成因及其对岩石圈伸展减薄的指示[J]. 中国地质, 2022, 49(4): 1323-1345. Shang Y M, Li X W, Zhu X Y, et al. Petrogenesis and its implications for the lithospheric thinning of the Wushijiazi pluton in Chifeng, Inner Mongolia[J]. Geology in China, 2022, 49(4): 1323-1345. |
[47] | Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48: 43-55. doi: 10.1016/0009-2541(85)90034-8 |
[48] | 王泉, 余友, 韦健, 等. 黑龙江东部伊春-延寿晚三叠世-早侏罗世花岗岩岩基带深部约束机制[J]. 矿产勘查, 2017, 8(2): 229-238. Wang Q, Yu Y, Wei J, et al. Deep constraints mechanism of Late Triassic-Early Jurassic Yichun-Yanshou granite batholith belt, eastern Heilongjiang[J]. Mineral Exploration, 2017, 8(2): 229-238. |
Tectonic location map of the study area (Modified from Reference[15])
Regional geological map of the study area
Field outcrops and microphotographs of the granite samples from Baihuaqingniandui area
Zircon CL images and U-Pb age concordia diagram of the syenogranites in Baihuaqingniandui area
The TAS and K2O-SiO2 diagrams of granites in the study area (After References[27-28])
Chondrite-normalized REE patterns and primitive mantle-normalized trace element spidergrams of the granites in the study area
Various chemical discrimination diagrams of early Jurassic granites in the study area(After Reference[31])
The Nb-Y-Ce and Rb/Nb-Y/Nb discrimination diagrams of granites in the study area(After Reference[37])
The R1-R2 discrimination diagram of granites in the study area (After Reference[47])