Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 3
Article Contents

WANG Pengxing, LIU Bingbing, HUANG Yanfang, SUN Hu, HAN Guihong. Review on the Strategic Metals Recovery from Electrolytic Manganese Anode Slime (EMAS)[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 53-62. doi: 10.13779/j.cnki.issn1001-0076.2022.03.008
Citation: WANG Pengxing, LIU Bingbing, HUANG Yanfang, SUN Hu, HAN Guihong. Review on the Strategic Metals Recovery from Electrolytic Manganese Anode Slime (EMAS)[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 53-62. doi: 10.13779/j.cnki.issn1001-0076.2022.03.008

Review on the Strategic Metals Recovery from Electrolytic Manganese Anode Slime (EMAS)

More Information
  • 75 000-120 000 tons of electrolytic manganese anode slime (EMAS) are produced in the electrolytic manganese industry every year. The EMAS has high content of strategic metals, complex mineral compositions and complicated structure, and thus the comprehensive utilization is difficult. At present, most manufacturers sell the EMAS cheaply or take the stockpiling disposal, causing serious waste of resources and environmental pollution. This paper analyzed the production mechanism and resource characteristics of the EMAS, and also summarized the separation and recovery technologies of the valuable metals including Mn, Pb, Sn, and Se from the EMAS. The advantages and disadvantages of the reduction leaching method, roasting-leaching method, and alkali melting-leaching method were reviewed and compared. This paper puts forward a novel technique solution for the comprehensive recovery of Mn, Pb, Sn, and Se by sulfur conversion, which can provide technical reference for utilization of EMAS.

  • 加载中
  • [1] JOO S, CHOI Y, SHIN H. Hierarchical multi-porous copper structure prepared by dealloying electrolytic copper-manganese alloy[J]. Journal of Alloys and Compounds, 2022, 900: 163423. doi: 10.1016/j.jallcom.2021.163423

    CrossRef Google Scholar

    [2] HE D, SHU J, WANG R, et al. A critical review on approaches for electrolytic manganese residue treatment and disposal technology: reduction, pretreatment, and reuse[J]. Journal of Hazardous Materials, 2021, 418: 126235. doi: 10.1016/j.jhazmat.2021.126235

    CrossRef Google Scholar

    [3] LI P, LUO S, WANG X, et al. Study on the high-efficiency separation of Fe and Mn from low-grade pyrolusite and the preparation of LiMN2O4 materials for lithium-ion batteries[J]. Separation and Purification Technology, 2021, 278: 119611. doi: 10.1016/j.seppur.2021.119611

    CrossRef Google Scholar

    [4] HE D, SHU J, ZENG X, et al. Synergistic solidification/stabilization of electrolytic manganese residue and carbide slag[J]. Science of the Total Environment, 2022, 810: 152175. doi: 10.1016/j.scitotenv.2021.152175

    CrossRef Google Scholar

    [5] YANG T, XUE Y, LIU X, et al. Solidification/stabilization and separation/extraction treatments of environmental hazardous components in electrolytic manganese residue: a review[J]. Process Safety and Environmental Protection, 2022, 157: 509-526. doi: 10.1016/j.psep.2021.10.031

    CrossRef Google Scholar

    [6] HUANG L. Q, BI Y. F, MU L. L, et al. The process and mechanism of electrolytic manganese anode slime lead removal[J]. Advanced Materials Research, 2014, 878: 163-170. doi: 10.4028/www.scientific.net/AMR.878.163

    CrossRef Google Scholar

    [7] WANG Y, GAO S, LIU X, et al. Preparation of non-sintered permeable bricks using electrolytic manganese residue: Environmental and NH3-N recovery benefits[J]. Journal of Hazardous Materials, 2019, 378: 120768. doi: 10.1016/j.jhazmat.2019.120768

    CrossRef Google Scholar

    [8] SHU J, WU Y, DENG Y, et al. Enhanced removal of Mn2+ and NH4+-N in electrolytic manganese metal residue using washing and electrolytic oxidation[J]. Separation and Purification Technology, 2021, 270: 118798. doi: 10.1016/j.seppur.2021.118798

    CrossRef Google Scholar

    [9] 黄良取, 黄升谋, 唐疆蜀, 等. 电解锰阳极泥的利用研究进展[J]. 武汉工程大学学报, 2015, 37(10): 5-10.

    Google Scholar

    HUANG L, HUANG S, TANG J, et al. Research progress on utilization of electrolytic manganese anode slime[J]. Journal of Wuhan University, 2015, 37(10): 5-10.

    Google Scholar

    [10] 夏熙. 二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(1)[J]. 电池, 2004(6): 411-414. doi: 10.3969/j.issn.1001-1579.2004.06.009

    CrossRef Google Scholar

    XIA X. Crystal structure, preparation and discharge performance for manganese dioxides and related manganese oxides (Ⅰ). Battery Bimonthly, 2004(6): 411-414. doi: 10.3969/j.issn.1001-1579.2004.06.009

    CrossRef Google Scholar

    [11] SONG J, ZHU J, ZHANG P, et al. Reduction of low-grade manganese oxide ore by biomass roasting[J]. ActaMetallurgicaSinica-English Letters, 2010(3): 223-229.

    Google Scholar

    [12] WU Y, SHI B, LIANG H, et al. Magnetic properties of low grade manganese carbonate ore[J]. Applied Mechanics and Materials, 2014, 664: 38-42. doi: 10.4028/www.scientific.net/AMM.664.38

    CrossRef Google Scholar

    [13] DUAN N, FAN W, CHANGBO Z, et al. Analysis of pollution materials generated from electrolytic manganese industries in China[J]. Resources, Conservation and Recycling, 2010, 54(8): 506-511. doi: 10.1016/j.resconrec.2009.10.007

    CrossRef Google Scholar

    [14] ZHANG H, BI Y, CHEN X, et al. Treatment and characterization analysis of electrolytic manganese anode slime[J]. Procedia Environmental Sciences, 2016, 31: 683-690. doi: 10.1016/j.proenv.2016.02.125

    CrossRef Google Scholar

    [15] ZHU R, LONG H, WANG Y, et al. Microwave-assisted recovery of lead from electrolytic manganese anode sludge using tartaric acid and NaOH[J]. Environmental Technology, 2021: 1-15.

    Google Scholar

    [16] TAO C, LI D, LIU Z, et al. Activation and purification of electrolytic-manganese anode slime and its application[J]. Battery Bimonthly, 2011, 41: 121-124.

    Google Scholar

    [17] GUO P, TANG J, WANG S, et al. Synergistic effect of reduction leaching of manganese anode slime and oxidation pretreatment of gold concentrate[J]. Materials Research Express, 2019(6): 1065.

    Google Scholar

    [18] LI K, CHEN J, PENG J, et al. Dielectric properties and thermal behavior of electrolytic manganese anode mud in microwave field[J]. Journal of Hazardous Materials, 2020, 384: 121227. doi: 10.1016/j.jhazmat.2019.121227

    CrossRef Google Scholar

    [19] ZHOU X, LUO C, WANG J, et al. Recycling application of modified waste electrolytic manganese anode slag as efficient catalyst for PMS activation[J]. SCIENCE of the Total Environment, 2021, 762: 143120. doi: 10.1016/j.scitotenv.2020.143120

    CrossRef Google Scholar

    [20] WU Y, SHEN H. Comprehensive recycling of manganese anode slime with modified reductant[J]. Mining and Metallurgical Engineering, 2016, 36(5): 69-72+75.

    Google Scholar

    [21] FAN X, XI S, SUN D, et al. Mn-Se interactions at the cathode interface during the electrolytic-manganese process[J]. Hydrometallurgy, 2012, 127/128: 24-29. doi: 10.1016/j.hydromet.2012.07.006

    CrossRef Google Scholar

    [22] 左小红. 高纯电解锰生产工艺设计探讨[J]. 湖南有色金属, 2003(1): 17-19. doi: 10.3969/j.issn.1003-5540.2003.01.006

    CrossRef Google Scholar

    ZUO X. Discussion on production process design of high purity electrolytic manganese[J]. Hunan Nonferrous Metals, 2003(1): 17-19. doi: 10.3969/j.issn.1003-5540.2003.01.006

    CrossRef Google Scholar

    [23] ZHANG W, CHENG C Y. Manganese metallurgy review. Part Ⅱ: manganese separation and recovery from solution[J]. Hydrometallurgy, 2007, 89: 160-177. doi: 10.1016/j.hydromet.2007.08.009

    CrossRef Google Scholar

    [24] 黄健, 李武斌, 张谊, 等. 一体化组合体电解槽电解锰阳极泥控制机理研究[J]. 广州化工, 2020, 48(15): 76-78. doi: 10.3969/j.issn.1001-9677.2020.15.026

    CrossRef Google Scholar

    HUANG J, LI W, ZHANG Y, et al. Research on control mechanism of anode mud producing manganese by combined electrolytic device[J]. Guangzhou Chemical Industry, 2020, 48(15): 76-78. doi: 10.3969/j.issn.1001-9677.2020.15.026

    CrossRef Google Scholar

    [25] 孙俊. 富铅电解锰渣中锰和铅回收工艺研究[D]. 昆明: 昆明理工大学, 2021.

    Google Scholar

    SUN J. Recovery of Mn and Pb from containing lead electrolytic manganese residues[D]. Kunming: Kunming University of Science and Technology, 2021.

    Google Scholar

    [26] 陈玉亮. 电解锰阳极泥中MnO2晶型调控规律及放电性能研究[D]. 重庆: 重庆大学, 2016.

    Google Scholar

    CHEN Y. Study on crystal shape control rule of MnO2 and discharge performance for electrolytic manganese anode slime[D]. Chongqing: Chongqing University, 2016.

    Google Scholar

    [27] XIE Z, CHANG J, TAO C, et al. Polyacrylonitrile-based carbon fiber as anode for manganese electrowinning: anode slime emission reduction and metal dendrite control[J]. Journal of the Electrochemical Society, 2021, 168: 013501. doi: 10.1149/1945-7111/abd608

    CrossRef Google Scholar

    [28] SHU J, LIU R, LIU Z, et al. Leaching of manganese from electrolytic manganese residue by electro-reduction[J]. Environmental Technology, 2017, 38: 2077-2084. doi: 10.1080/09593330.2016.1245789

    CrossRef Google Scholar

    [29] 魏汉可, 杨勇, 罗豆, 等. 电解金属锰阳极泥的综合回收利用研究[J]. 中国锰业, 2017, 35(S1): 55-58.

    Google Scholar

    WEI H, YANG Y, LUO D, et al. A research on comprehensive recycling of electrolytic manganese anode slime[J]. China's manganese industry, 2017, 35(S1): 55-58.

    Google Scholar

    [30] 严超, 杨勇, 黄冠汉, 等. 电解金属锰阳极泥资源化工程应用研究[J]. 中国锰业, 2017, 35(3): 135-137.

    Google Scholar

    YAN C, YANG Y, HUANG G, et al. A study on resource engineering utilization of electrolytic manganese anode slime[J]. China's manganese industry, 2017, 35(3): 135-137.

    Google Scholar

    [31] LUO S, GUO H, WANG Z, et al. The electrochemical performance and reaction mechanism of coated titanium anodes for manganese electrowinning[J]. Journal of the Electrochemical Society, 2019, 166: E502-E511. doi: 10.1149/2.1071914jes

    CrossRef Google Scholar

    [32] LUO S, GUO H, ZHANG S, et al. Comprehensive utilization of metallurgic waste in manganese electrowinning: Towards high performance LiMn2O4[J]. Ceramics International, 2019, 45: 8607-8615. doi: 10.1016/j.ceramint.2019.01.180

    CrossRef Google Scholar

    [33] 刘建本, 陈上. 用电解锰阳极泥和含SO2工业尾气制备硫酸锰[J]. 化工环保, 2009, 29(6): 538-540. doi: 10.3969/j.issn.1006-1878.2009.06.014

    CrossRef Google Scholar

    LIU J, CHEN S. Preparation of manganese sulfate using anode slurry from electrolytic manganese production and industrial exhaust gas containing SO2[J]. Environmental Protection of Chemical Industry, 2009, 29(6): 538-540. doi: 10.3969/j.issn.1006-1878.2009.06.014

    CrossRef Google Scholar

    [34] 黄良取. 电解锰阳极泥制备锰酸锂电池正极材料的工艺研究[D]. 武汉: 武汉工程大学, 2014: 83.

    Google Scholar

    HUANG L. Research on preparation of manganate cathode materials for lithium batteries with electrolytic manganese anode slime[D]. Wuhan: Wuhan Institute of Technology, 2014: p83.

    Google Scholar

    [35] 陈炳翰, 丁建华, 叶会寿, 等. 中国硒矿成矿规律概要[J]. 矿床地质, 2020, 39(6): 1063-1077.

    Google Scholar

    CHEN B, DING J, YE H, et al. Metallogenic regularity of selenium ore in China[J]. Mineral Deposits, 2020, 39(6): 1063-1077.

    Google Scholar

    [36] FUNARI V, GOMES H I, COPPOLA D, et al. Opportunities and threats of selenium supply from unconventional and low-grade ores: a critical review[J]. Resources, Conservation and Recycling, 2021, 170: 105593. doi: 10.1016/j.resconrec.2021.105593

    CrossRef Google Scholar

    [37] ABOUTALEBI MR, ISAC M, GUTHRIE R I L. The behaviour of selenium impurities during the addition of Se-containing manganese to steel melt[J]. Steel Research International, 2004, 75: 366-372. doi: 10.1002/srin.200405782

    CrossRef Google Scholar

    [38] 鲜金利, 童湖云, 蔡正杰, 等. 硒与新型冠状病毒研究进展[J]. 保健医学研究与实践, 2020, 17(5): 12-17.

    Google Scholar

    XIAN J, DONG H, CAI Z, et al. Research progress of selenium and novelcoro navirus[J]. Health Medicine Research and Practice, 2020, 17(5): 12-17.

    Google Scholar

    [39] 张栋. 铜阳极泥蒸硒过程中含硒物相变化的研究[D]. 昆明: 昆明理工大学, 2021.

    Google Scholar

    ZHANG D. Study on the change of selenium phase in copper anode slime during selenium evaporation[D]. Kunming University of Science and Technology, 2021.

    Google Scholar

    [40] 曾宪日, 王雨红, 屈欣轲, 等. 碱浸回收电解锰阳极泥中硒的研究[J]. 有色金属(冶炼部分), 2016(8): 48-51. doi: 10.3969/j.issn.1007-7545.2016.08.011

    CrossRef Google Scholar

    ZENG X, WANG Y, QU X, et al. Seleniumre covery from manganese anode slime by alkaline leaching. Nonferrous Metals (Extractive Metallurgy), 2016(8): 48-51. doi: 10.3969/j.issn.1007-7545.2016.08.011

    CrossRef Google Scholar

    [41] 彭思尧, 杨建广, 陈冰, 等. 含锡二次资源隔膜电积回收锡新工艺试验[J]. 中国有色金属学报, 2016, 26(12): 2656-2667.

    Google Scholar

    PENG S, YANG J, CHEN B, et al. Novel process for tin recovery from stannous secondary resources based on membrane electrodeposition[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(12): 2656-2667.

    Google Scholar

    [42] 韦栋梁, 何绘宇, 夏斌. 对我国锡矿业发展的几点思考[J]. 中国矿业, 2006(1): 58-61. doi: 10.3969/j.issn.1004-4051.2006.01.017

    CrossRef Google Scholar

    WEI D, HE H, XIA B. Some views on the development of tin industry in China[J]. China Mining Magazine, 2006(1): 58-61. doi: 10.3969/j.issn.1004-4051.2006.01.017

    CrossRef Google Scholar

    [43] 马娟, 秦德先, 薛传东. 世界锡矿资源形势预测[J]. 昆明理工大学学报(理工版), 2002(6): 13-17. doi: 10.3969/j.issn.1007-855X.2002.06.004

    CrossRef Google Scholar

    MA J, QIN D, XUE C. Prediction of the situation for the world tin mines[J]. Journal of Kunming University of Science and Technology, 2002(6): 13-17. doi: 10.3969/j.issn.1007-855X.2002.06.004

    CrossRef Google Scholar

    [44] 崔凤平. 电解锰用阳极材料中锡的示波极谱法测定[J]. 冶金分析, 2003(4): 72. doi: 10.3969/j.issn.1000-7571.2003.04.030

    CrossRef Google Scholar

    CUI F. Determination of tin in anode material by oscillopolarography for electrolytic manganese[J]. Metallurgical Analysis, 2003(4): 72. doi: 10.3969/j.issn.1000-7571.2003.04.030

    CrossRef Google Scholar

    [45] TENG Y, HAN F, ZHAO S, et al. Preparation of manganese sulfate by reduction of electrolytic manganese mud with corn straws[J]. Singapore: Springer Singapore, 2018, pp 627-636.

    Google Scholar

    [46] DU B, ZHOU C, LI X, et al. A kinetic study of Mn (Ⅱ) precipitation of leached aqueous solution from electrolytic manganese residues[J]. Toxicological&Environmental Chemistry, 2015, 97: 349-357.

    Google Scholar

    [47] 王强. 玉米秆还原浸出电解锰阳极泥制备化学二氧化锰研究[D]. 南宁: 广西大学, 2015.

    Google Scholar

    WANG Q. Study on preparation ofchemicalmanganese dioxide leaching of electrolytic mangane seanode slimer eduction for corn stalk[D]. Nanning: Guangxi University, 2015.

    Google Scholar

    [48] 符磊, 满瑞林, 扶强, 等. 电解锰阳极泥制备锰酸锂[J]. 广东化工, 2018, 45(8): 13-15.

    Google Scholar

    FU L, MAN R, FU Q, et al. Preparation of lithium manganate from electrolytic manganese anode slime[J]. Guangdong Chemical Industry, 2018, 45(8): 13-15.

    Google Scholar

    [49] 伍永国. 电解锰阳极渣回收制备一氧化铅和活性二氧化锰[D]. 吉首: 吉首大学, 2020.

    Google Scholar

    WU Y. Preparation oflead oxide and active manganese dioxide from electrolyticmanganese anode slag[D]. Jishou: Jishou University, 2020.

    Google Scholar

    [50] 严浩, 彭文杰, 王志兴, 等. 响应曲面法优化电解锰阳极渣还原浸出工艺[J]. 中国有色金属学报, 2013, 23(2): 528-534.

    Google Scholar

    YAN H, PENG W, WANG Z, et al. Reductive leaching technology of manganese anode slag optimized by response surface methodology[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(2): 528-534.

    Google Scholar

    [51] 沈慧庭, 覃华, 黄晓毅, 等. 某含锰冶金渣中锰和铅的综合回收研究[J]. 金属矿山, 2009(6): 171-176.

    Google Scholar

    SHEN H, TAN H, HUANG X, et al. Research on the comprehensive recovery of manganese and an Mn-bearing metallurgical residue[J]. Metal mine, 2009(6): 171-176.

    Google Scholar

    [52] ZHANG Y, YOU Z, LI G, et al. Manganese extraction by sulfur-based reduction roasting-acid leaching from low-grade manganese oxide ores[J]. Hydrometallurgy, 2013, 133: 126-132. doi: 10.1016/j.hydromet.2013.01.003

    CrossRef Google Scholar

    [53] 汤集刚, 韩至成. 锰阳极泥的工艺矿物学及杂质的脱除研究[J]. 矿冶, 2005(3): 75-78.

    Google Scholar

    TANG J, HAN Z. Investigation on process mineralogy of manganese anode slime and impurity removal[J]. Mining&Metallurgy, 2005(3): 75-78.

    Google Scholar

    [54] 申永强, 符智荣, 黄养逢, 等. 电解金属锰阳极泥回收制备化学二氧化锰工艺研究[J]. 中国锰业, 2007(3): 14-16.

    Google Scholar

    SHEN Y, FU Z, HUANG Y, et al. The research on manganese anode slime recycle to produce into chemical manganese dioxide[J]. China's Manganese Industry, 2007(3): 14-16.

    Google Scholar

    [55] 陈晓亮, 王海峰, 尤晓宇, 等. 两矿法浸出电解锰阳极渣中锰的研究[J]. 矿冶工程, 2021, 41(3): 92-94.

    Google Scholar

    CHEN X, WANG H, YOU X, et al. Leaching of manganese in anode residue from manganese electrolysis[J]. Mining and Metallurgical Engineering, 2021, 41(3): 92-94.

    Google Scholar

    [56] 吴焱, 沈慧庭. 改性无机还原剂还原浸出电解锰阳极泥综合回收锰铅研究[J]. 矿冶工程, 2016, 36(5): 69-72.

    Google Scholar

    WU Y, SHEN H. Comprehensive recycling of manganese anode slime with modified reductant[J]. Mining and Metallurgical Engineering, 2016, 36(5): 69-72.

    Google Scholar

    [57] 赵世珍, 韩凤兰, 滕於江, 等. 木纤维还原电解锰阳极泥制备硫酸锰工艺研究[J]. 无机盐工业, 2017, 49(6)63-65.

    Google Scholar

    ZHAO S, HAN F, TENG Y, et al. Study on preparation of manganese sulfate by reduction of electrolytic manganese anode slime with wood fiber[J]. Inorganic Chemicals Industry, 2017, 49(6): 63-65.

    Google Scholar

    [58] 刘贵扬, 沈慧庭, 王强. 电解锰阳极泥有机还原浸出回收锰和铅的研究[J]. 矿冶工程, 2014(4): 92-98.

    Google Scholar

    LIU G, SHEN H, WANG Q. Recovery of manganese and lead from manganese electrowinning anode slimeby reduction leaching with organic reductants[J]. Mining and Metallurgical Engineering, 2014(4): 92-98.

    Google Scholar

    [59] XIE H, ZHANG L, CHEN G, et al. High temperature roasting combined with ultrasonic enhanced extracting lead from electrolytic manganese anode mud[J]. Materials Research Express, 2019, 6(10): 105530.

    Google Scholar

    [60] 黎应芬, 李祥, 叶华, 等. 硫磺还原焙烧-酸浸法提取锰阳极泥[J]. 有色金属(冶炼部分), 2017(8): 13-15.

    Google Scholar

    LI Y, LI X, YE H, et al. Recovery of manganese anode slimes by sulfur reduction roasting-acid leaching process[J]. Nonferrous Metals (Extractive Metallurgy), 2017(8): 13-15.

    Google Scholar

    [61] SHU J, LIU R, LIU Z, et al. Enhanced discharge performance of electrolytic manganese anode slime using calcination and pickling approach[J]. Journal of Electroanalytical Chemistry, 2017, 806: 15-21.

    Google Scholar

    [62] WANG B, MU L, GUO S, et al. Lead leaching mechanism and kinetics in electrolytic manganese anode slime[J]. Hydrometallurgy, 2019, 183: 98-105.

    Google Scholar

    [63] XIE H, LI S, GUO Z, et al. Extraction of lead from electrolytic manganese anode mud by microwave coupled ultrasound technology[J]. Journal of Hazardous Materials, 2021, 407: 124622.

    Google Scholar

    [64] ZHANG Y, WANG J, LIU B, et al. Extraction and separation of Mn and Pb from electrolytic manganese anodic slime (EMAS) via SO2 roasting followed by acid leaching process[J]. JOM, 2020, 72(2): 925-932.

    Google Scholar

    [65] 王晖, 王重庆, 符剑刚. 硒的资源、提取及应用研究现状[J]. 稀有金属与硬质合金, 2013, 41(2): 1-5.

    Google Scholar

    WANG H, WANG C, FU J. Research on resource situation, extraction and application of selenium[J]. Rare Metals and Cemented Carbides, 2013, 41(2): 1-5.

    Google Scholar

    [66] KILIC Y, KARTAL G, TIMUR S. An investigation of copper and selenium recovery from copper anode slimes[J]. International Journal of Mineral Processing, 2013, 124: 75-82.

    Google Scholar

    [67] ZHENG Y, CHEN K. Leaching kinetics of selenium from selenium-tellurium-rich materials in sodium sulfite solutions[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(2): 536-543.

    Google Scholar

    [68] LIU W, YANG T, ZHANG D, et al. Pretreatment of copper anode slime with alkaline pressure oxidative leaching[J]. International Journal of Mineral Processing, 2014, 128: 48-54.

    Google Scholar

    [69] 覃兆财, 明宪权, 李春霞, 等. 亚硫酸铵还原浸出电解锰阳极泥中锰和硒的研究[J]. 有色金属(冶炼部分), 2020(10): 55-59.

    Google Scholar

    TAN Z, MING X, LI C, et al. Leaching of manganese and selenium from electrolytic manganese anode slime with ammonium sulfiteas reducing agent[J]. Nonferrous Metals (Extractive Metallurgy), 2020(10): 55-59.

    Google Scholar

    [70] 王雨红, 覃兆财, 黄丽燕, 等. 从电解锰阳极泥中两段浸出锰富集硒试验研究[J]. 湿法冶金, 2020, 39(2): 118-122.

    Google Scholar

    WANG Y, TAN Z, HUANG L, et al. Two-stage leaching of manganese and enrichment of selenium from electrolytic manganese anode slime[J]. Hydrometallurgy of China, 2020, 39(2): 118-122.

    Google Scholar

    [71] 韦成果. 含锡富渣烟化炉硫化挥发[J]. 有色金属(冶炼部分), 2002(4): 21-22.

    Google Scholar

    WEI C. Sulphurationvolatilization of rich tin slag on fuming furnace[J]. Nonferrous Metals (Extractive Metallurgy), 2002(4): 21-22.

    Google Scholar

    [72] P. HALSALL P. HODGKINS. 从副产品中回收锡和中低品位锡精矿的综合利用[J]. 有色金属(冶炼部分), 1982(8): 31-37.

    Google Scholar

    P. HALSALL P. HODGKINS. Comprehensive utilization of tin recovery from by-products and medium and low grade tin concentrate[J]. Nonferrous Metals (Extractive Metallurgy), 1982(8): 31-37.

    Google Scholar

    [73] 后宝明. 碳热还原硫化挥发法从锡中矿回收金属锡的试验研究[J]. 矿冶, 2015, 24(4): 39-42.

    Google Scholar

    HOU B. Experiment study on tin recovery from tin middling product by carbothermic reduction and sulfidizing volatilization[J]. Mining&Metallurgy, 2015, 24(4): 39-42.

    Google Scholar

    [74] 钟晨, 陈淑瑜, 梁惠珠. 用低品位锡矿制取锡酸钠的研究[J]. 广东有色金属学报, 1999(1): 37-43.

    Google Scholar

    ZHONG C, CHEN S, LIANG H. Study on preparation of sodium stannate from the tin ore of low grade[J]. Journal of guangdong non-ferrous metals, 1999(1): 37-43.

    Google Scholar

    [75] 傅其华. 从低品位锡渣中制取锡酸钠[J]. 有色金属(冶炼部分), 1983(8): 10-12.

    Google Scholar

    FU Q. Sodium stannate is prepared from low-grade tin slag[J]. Nonferrous Metals (Extractive Metallurgy), 1983(8): 10-12.

    Google Scholar

    [76] LIU W, GU K, HAN J, et al. Innovative methodology for comprehensive use of tin anode slime: preparation of CaSnO3[J]. Minerals Engineering, 2019, 143: 105945.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(4)

Article Metrics

Article views(3203) PDF downloads(364) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint