Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 3
Article Contents

HUANG Yanfang, WANG Meimei, LIU Bingbing, SUN Hu, HAN Guihong. Research Progress on Separation and Extraction of Critical Metal Cobalt from Secondary Co-containing Resources[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 45-52. doi: 10.13779/j.cnki.issn1001-0076.2022.03.007
Citation: HUANG Yanfang, WANG Meimei, LIU Bingbing, SUN Hu, HAN Guihong. Research Progress on Separation and Extraction of Critical Metal Cobalt from Secondary Co-containing Resources[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 45-52. doi: 10.13779/j.cnki.issn1001-0076.2022.03.007

Research Progress on Separation and Extraction of Critical Metal Cobalt from Secondary Co-containing Resources

More Information
  • At present, with the surging demand of cobalt metal, the extraction of cobalt from mineral resources can not fully meet the market requirement. Separation and extraction of cobalt from secondary resources is an important approach to relief the undersupply of cobalt. In this paper, the resource characteristics of Co mineral resources and secondary Co-containing resources, including waste catalysts, Co-Mn leaching residues, and waste batteries, were analyzed, and the processes, principles and technical effects of chemical precipitation method, solvent extraction method, ion exchange method and electrolysis method for the separation of cobalt and manganese ions from solutions were introduced and compared. In addition, the combined beneficiation and metallurgy methods which were suitable for the separation of cobalt and manganese from solutions were also reviewed. Among the combined technologies, the novel flotation-extraction method had the dual advantages of interface separation and chemical separation, and it was characterized as high separation efficiency, short process and low cost. It is especially suitable for the large-scale separation and enrichment of valuable metals in low-concentration waste liquid or wastewater in the metallurgical industry, presenting a broad application prospect.

  • 加载中
  • [1] 周涛发, 范裕. 关键金属的富集机制、矿产勘查和综合利用: 前言[J]. 岩石学报, 2021, 37(9): 2599-2603.

    Google Scholar

    ZHOU T F, FAN Y. Enrichment mechanism, exploration and efficient utilization of critical metal[J]. Acta Petrologica Sinica, 2021, 37(9): 2599-2603.

    Google Scholar

    [2] 李文昌, 李建威, 谢桂青, 等. 中国关键矿产现状、研究内容与资源战略分析[J]. 地学前缘, 2022, 29(1): 1-13.

    Google Scholar

    LI W C, LI J W, XIE G Q, et al. Critical minerals in China: current status, research focus and resource strategic analysis[J]. Earth Science Frontiers, 2022, 29(1): 1-13.

    Google Scholar

    [3] 王永利, 徐国栋. 钴资源的开发和利用[J]. 河北北方学院学报(自然科学版), 2005(3): 24-27.

    Google Scholar

    WANG Y L, XU G D. The development and use of cobalt resource[J]. Journal of Hebei North University (Natural Science Edition), 2005(3): 24-27.

    Google Scholar

    [4] 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106-111.

    Google Scholar

    QU M G, WU F Y, HU R Z, et al. Critical metal mineral resources: current research status and scientific issue[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 106-111.

    Google Scholar

    [5] USGS. Geological survey mineral commodity summaries[EB/OL]. 2022. https://pubs.usgs.gov/periodicals/mcs2022/mcs2022.pdf.

    Google Scholar

    [6] 刘昱辰, 张邦胜, 刘贵清, 等. 2020年钴市场分析[J]. 中国资源综合利用, 2020, 38(11): 110-114. doi: 10.3969/j.issn.1008-9500.2020.11.030

    CrossRef Google Scholar

    LIU Y C, ZHANG B S, LIU G Q, et al. Market analysis of cobalt in 2020[J]. China Resources Comprehensive Utilization, 2020, 38(11): 110-114. doi: 10.3969/j.issn.1008-9500.2020.11.030

    CrossRef Google Scholar

    [7] 刘昱辰, 张邦胜, 刘贵清, 等. 2020年钴市场分析[J]. 中国资源综合利用, 2020, 38(11): 110-114. doi: 10.3969/j.issn.1008-9500.2020.11.030

    CrossRef Google Scholar

    LIU Y C, ZHANG B S, LIU G Q, et al. Market analysis of cobalt in 2020[J]. China Resources Comprehensive Utilization, 2020, 38(11): 110-114. doi: 10.3969/j.issn.1008-9500.2020.11.030

    CrossRef Google Scholar

    [8] 李成伟, 王家义. 全球钴资源供应现状简析[J]. 中国资源综合利用, 2018, 36(7): 102-103. doi: 10.3969/j.issn.1008-9500.2018.07.036

    CrossRef Google Scholar

    LI C W, WANG J Y. A brief analysis of the current status of global cobalt resource supply[J]. China Resources Comprehensive Utilization, 2018, 36(7): 102-103. doi: 10.3969/j.issn.1008-9500.2018.07.036

    CrossRef Google Scholar

    [9] 刘超, 陈甲斌. 全球钴资源供需形势分析[J]. 国土资源情报, 2020(10): 27-33. doi: 10.3969/j.issn.1674-3709.2020.10.005

    CrossRef Google Scholar

    LIU C, CHEN J B. Analysis of supply and demand situation of global cobalt resources[J]. Land and Resources Information, 2020(10): 27-33. doi: 10.3969/j.issn.1674-3709.2020.10.005

    CrossRef Google Scholar

    [10] 王京, 石香江, 王寿成, 等. 未来中国钴资源需求预测[J]. 中国国土资源经济, 2019, 32(10): 28-33.

    Google Scholar

    WANG J, SHI X J, WANG S C, et al. Demand forecast of China's cobalt resource in the future[J]. Natural Resource Economics of China, 2019, 32(10): 28-33.

    Google Scholar

    [11] 李治东, 李博慧, 辛悦. 钴锰混合催化剂催化氧化VOCs研究进展[J]. 辽宁化工, 2020, 49(12): 1529-1532. doi: 10.3969/j.issn.1004-0935.2020.12.022

    CrossRef Google Scholar

    LI Z D, LI B H, XIN Y. Research progress of catalytic oxidation of VOCs by cobalt-manganese mixture catalyst[J]. Liaoning Chemical Industry, 2020, 49(12): 1529-1532. doi: 10.3969/j.issn.1004-0935.2020.12.022

    CrossRef Google Scholar

    [12] 黄智贤, 李明明, 邱挺. PTA氧化残渣中苯甲酸和Co2+、Mn2+的分离回收[J]. 福州大学学报(自然科学版), 2020, 48(6): 800-805.

    Google Scholar

    HUANG Z X, LI M M, QIU T. Separation and recovery of benzoic acid and Co2+, Mn2+ from PTA oxidation residue[J]. Journal of Fuzhou University (Natural Science Edition), 2020, 48(6): 800-805.

    Google Scholar

    [13] 胡大锵, 杨洋. PTA废水再生处理工艺探讨[J]. 给水排水, 2014, 50(7): 43-47. doi: 10.3969/j.issn.1002-8471.2014.07.011

    CrossRef Google Scholar

    HU D Q, YANG Y. Probe into PTA wastewater reclamation process[J]. Water & Wastewater Engineering, 2014, 50(7): 43-47. doi: 10.3969/j.issn.1002-8471.2014.07.011

    CrossRef Google Scholar

    [14] 王德诚. 我国PTA生产能力继续扩大[J]. 聚酯工业, 2021, 34(1): 60.

    Google Scholar

    WANG D C. PTA production capacity continues to expand in China[J]. Polyester Industry, 2021, 34(1): 60.

    Google Scholar

    [15] 王玉芳, 闫丽, 王海北, 等. 复杂含钴物料处理工艺研究[J]. 矿冶, 2014, 23(2): 55-58.

    Google Scholar

    WANG Y F, YAN L, WANG H B, et al. Study on comprehensive processing of a complex cobalt sulfide material[J]. Mining & Metallurgy, 2014, 23(2): 55-58.

    Google Scholar

    [16] 林江顺, 蒋开喜. 钴锰渣除杂提钴工艺研究[J]. 有色金属, 2002(3): 36-38.

    Google Scholar

    LIN J S, JIANG K X. Cobalt recovery from cobalt manganese material[J]. Nonferrous Metals, 2002(3): 36-38.

    Google Scholar

    [17] 蒋闯, 周进生, 吴春明. 我国锰矿产业集群式发展的案例研究[J]. 经济纵横, 2015(9): 75-78.

    Google Scholar

    JIANG C, ZHOU J S, WU C M. Case study of cluster development of Manganese industry in China[J]. Economic Review Journal, 2015(9): 75-78.

    Google Scholar

    [18] 李荣念. 温和体系浸出废弃锂离子电池正极材料钴和锂的研究[D]. 徐州: 中国矿业大学, 2021.

    Google Scholar

    LI R N. Research on leaching cobalt and lithium as cathode material of spent lithium-ion battery in a gentle system[D]. Xuzhou: China University of Mining and Technology, 2021.

    Google Scholar

    [19] 陈燕南, 童海华. 掘金千亿退役动力电池回收赛道: 价格最高5万元一吨巨头争相入局[N]. 中国经营报, 2022-06-13(C05).

    Google Scholar

    CHEN Y N, TONG H H. Denver 100 billion retired power battery recycling track: the price of up to 50, 000 yuan a ton of giants compete to enter the game[N]. China Business Journal, 2022-06-13(C05).

    Google Scholar

    [20] 詹稳. 废锂离子电池中钴的回收研究[J]. 化工管理, 2019(12): 53-54. doi: 10.3969/j.issn.1008-4800.2019.12.034

    CrossRef Google Scholar

    ZHAN W. Recovery of cobalt from spent lithium-ion batteries[J]. Chemical Enterprise Management, 2019(12): 53-54. doi: 10.3969/j.issn.1008-4800.2019.12.034

    CrossRef Google Scholar

    [21] 陈玲玲, 韩俊伟, 覃文庆, 等. 铅锌冶炼渣综合利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 49-55.

    Google Scholar

    CHEN L L, HAN J W, QIN W Q, et al. Advances in comprehensive utilization of lead-zinc smelting slag[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 49-55.

    Google Scholar

    [22] 王俊杰, 谈定生, 丁家杰, 等. 湿法炼锌渣柠檬酸浸出回收钴、锌和镍[J]. 矿产保护与利用, 2021, 41(2): 137-143.

    Google Scholar

    WANG J J, TAN D S, DING J J, et al. Experimental study on leaching of valuable metals from purification residue of Zinc hydrometallurgy[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 137-143.

    Google Scholar

    [23] 李明诗, 郭首义, 李浩东, 等. 废旧碱性锌锰电池综合回收钾、锌、锰[J]. 矿产保护与利用, 2020, 40(5): 134-137.

    Google Scholar

    LI M S, GUO S Y, LI H D, et al. Study on comprehensive utilization of spent zinc-manganese batteries[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 134-137.

    Google Scholar

    [24] 杨晓松, 陈国强, 邵立南, 等. 有色冶金废渣处理处置技术及发展趋势[J]. 有色金属(冶炼部分), 2021(3): 31-35. doi: 10.3969/j.issn.1007-7545.2021.03.006

    CrossRef Google Scholar

    YANG X S, CHEN G Q, SHAO L N, et al. Disposal technology and development trend of nonferrous metallurgical waste slag[J]. Nonferrous Metals (Extractive Metallurgy), 2021(3): 31-35. doi: 10.3969/j.issn.1007-7545.2021.03.006

    CrossRef Google Scholar

    [25] 秦娟, 周志伟, 李超, 等. 回收PX氧化催化剂的再生研究[J]. 广东化工, 2013, 40(13): 77-78. doi: 10.3969/j.issn.1007-1865.2013.13.037

    CrossRef Google Scholar

    QIN J, ZHOU Z W, LI C, et al. Study on the regeneration process for recovery PX oxidation catalyst[J]. Guangdong Chemical Industry, 2013, 40(13): 77-78. doi: 10.3969/j.issn.1007-1865.2013.13.037

    CrossRef Google Scholar

    [26] HE H P, FENG J L, GAO X F, et al. Selective separation and recovery of lithium, nickel, MnO2, and Co2O3 from LiNi0.5Mn0.3Co0.2O2 in spent battery[J]. Chemosphere, 2022, 286(Pt 3): 131897.

    Google Scholar

    [27] 何沁华. PTA生产中废钴锰催化剂资源循环利用[D]. 常州: 江苏理工学院, 2016.

    Google Scholar

    HE B H. Recycling of waste cobalt manganese catalyst resources in the production of PTA[D]. Changzhou: Jiangsu University of Technology, 2016.

    Google Scholar

    [28] 何显达. 人造金刚石酸洗触媒废液中镍、钴、锰回收研究[D]. 长沙: 中南大学, 2005.

    Google Scholar

    HE X D. Recovery of nickel, cobalt and manganese from catalyst waste liquid of artificial diamond pickling[D]. Changsha: Central South University, 2005.

    Google Scholar

    [29] KATSIAPI A, TSAKIRIDIS P E, OUSTADAKIS P, et al. Cobalt recovery from mixed Co-Mn hydroxide precipitates by ammonia-ammonium carbonate leaching[J]. Minerals Engineering, 2010, 23(8): 643-651. doi: 10.1016/j.mineng.2010.03.006

    CrossRef Google Scholar

    [30] 何家成. 氨法回收人造金刚石酸洗废液中的镍、钴、锰[J]. 中国物资再生, 1997(6): 10-12.

    Google Scholar

    HE J C. Recovery of nickel, cobalt and manganese from pickling waste liquid of artificial diamond by ammonia method[J]. The China National Resources Recycling, 1997(6): 10-12.

    Google Scholar

    [31] BARIK S P, PRABAHARAN G, KUMAR L. Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: laboratory and pilot scale study[J]. Journal of Cleaner Production, 2017, 147: 37-43. doi: 10.1016/j.jclepro.2017.01.095

    CrossRef Google Scholar

    [32] 刘爱贤, 柳云琪, 邱广敏, 等. 人造金刚石酸洗废液的回收和利用[J]. 石油大学学报(自然科学版), 1998(1): 103-105+120.

    Google Scholar

    LIU A X, LIU Y Q, QIU G M, et al. Recovery and utilization of the waste acid liquid in the process of synthesizing diamond[J]. Journal of China University of Petroleum (Edition of Natural Science), 1998(1): 103-105+120.

    Google Scholar

    [33] DUTTA D, KUMARI A, PANDA R, et al. Close loop separation process for the recovery of Co, Cu, Mn, Fe and Li from spent lithium-ion batteries[J]. Separation and Purification Technology, 2018, 200: 327-334. doi: 10.1016/j.seppur.2018.02.022

    CrossRef Google Scholar

    [34] 王艳, 周春山. 含钴废渣硫酸化焙砂浸出液中钴、铁、锰分离研究[J]. 化学世界, 2001(6): 289-290+305. doi: 10.3969/j.issn.0367-6358.2001.06.003

    CrossRef Google Scholar

    WANG Y, ZHOU C S. Study on the separation of cobalt, iron and manganese from the leach solution of sulphated calcined cobalt residue[J]. Chemical World, 2001(6): 289-290+305. doi: 10.3969/j.issn.0367-6358.2001.06.003

    CrossRef Google Scholar

    [35] BISWAL A, MAHAKUD S, BHUYAN S, et al. Recovery of Co metal and electrolytic manganese dioxide (EMD) from Co-Mn sludge[J]. Hydrometallurgy, 2015, 152: 159-168. doi: 10.1016/j.hydromet.2015.01.006

    CrossRef Google Scholar

    [36] NAYL A A, HAMED M M, RIZK S E. Selective extraction and separation of metal values from leach liquor of mixed spent Li-ion batteries[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 55: 119-125.

    Google Scholar

    [37] ZANTE G, BRAUN A, MASMOUDI A, et al. Solvent extraction fractionation of manganese, cobalt, nickel and lithium using ionic liquids and deep eutectic solvents[J]. Minerals Engineering, 2020, 156.

    Google Scholar

    [38] JOO S-H, SHIN S M, SHIN D, et al. Extractive separation studies of manganese from spent lithium battery leachate using mixture of PC88A and Versatic 10 acid in kerosene[J]. Hydrometallurgy, 2015, 156: 136-141.

    Google Scholar

    [39] MILEVSKⅡ N A, ZINOVEVA I V, ZAKHODYAEVA Y A, et al. Separation of Li(Ⅰ), Co(Ⅱ), Ni(Ⅱ), Mn(Ⅱ), and Fe(Ⅲ) from hydrochloric acid solution using a menthol-based hydrophobic deep eutectic solvent[J]. Hydrometallurgy, 2022, 207.

    Google Scholar

    [40] WANG F, HE F, ZHAO J, et al. Extraction and separation of cobalt(Ⅱ), copper(Ⅱ) and manganese(Ⅱ) by Cyanex272, PC-88A and their mixtures[J]. Separation and Purification Technology, 2012, 93: 8-14. doi: 10.1016/j.seppur.2012.03.018

    CrossRef Google Scholar

    [41] ZHAO J M, SHEN X Y, DENG F L, et al. Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex272 and PC-88A[J]. Separation and Purification Technology, 2011, 78(3): 345-351.

    Google Scholar

    [42] PIROM T, WONGKAEW K, WANNACHOD T, et al. Separation of Co(Ⅱ) and Mn(Ⅱ) from sulphate media via a HFSLM: reaction flux model and experimental verification[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1532-1541.

    Google Scholar

    [43] 胡博, 黄凌云, 孙鑫, 等. 矿山废水处理技术研究进展[J]. 矿产保护与利用, 2021, 41(1): 46-52.

    Google Scholar

    HU B, HUANG L Y, SUN X, et al. Research progress of mine wastewater treatment technology[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 46-52.

    Google Scholar

    [44] 杨海, 黄新, 林子增, 等. 离子交换法处理重金属废水的研究进展[J]. 应用化工, 2019, 48(7): 1675-1680.

    Google Scholar

    YANG H, HUANG X, LIN Z Z, et al. Research progress in the treatment of heavy metal wastewater by ion exchange[J]. Applied Chemical Industry, 2019, 48(7): 1675-1680.

    Google Scholar

    [45] STRAUSS M L, DIAZ L A, MCNALLY J, et al. Separation of cobalt, nickel, and manganese in leach solutions of waste lithium-ion batteries using Dowex M4195 ion exchange resin[J]. Hydrometallurgy, 2021, 206.

    Google Scholar

    [46] MENDES F D, MARTINS A H. Selective sorption of nickel and cobalt from sulphate solutions using chelating resins[J]. International Journal of Mineral Processing, 2004, 74(1/2/3/4): 359-371.

    Google Scholar

    [47] 周杰, 宋小三, 王三反. 高浓度含铜电镀废水膜电解处理与回用[J]. 化工进展, 2021, 40(S2): 434-442.

    Google Scholar

    ZHOU J, SONG X S, WANG S F. Recovery and utilization of copper from electroplating wastewater with high concentration by membrane electrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 434-442.

    Google Scholar

    [48] LIU S P, WANG H B, JIANG K X, et al. Cobalt separation technologies and their application to scrap treatment[J]. Nonferrous Metals, 2004, 56(2): 73-76.

    Google Scholar

    [49] 王成彦, 王含渊, 江培海, 等. 高锰含钴物料中钴的回收[J]. 有色金属(冶炼部分), 2005(5): 2-5.

    Google Scholar

    WANG C Y, WANG H Y, JIANG P H, et al. Recovery of cobalt from cobalt ores with high manganese[J]. Nonferrous Metals (Mineral Processing Section), 2005(5): 2-5.

    Google Scholar

    [50] GAO R, BENETTON X D, VARIA J, et al. Membrane electrolysis for separation of cobalt from terephthalic acid industrial wastewater[J]. Hydrometallurgy, 2020, 191.

    Google Scholar

    [51] XING W, LEE M, CHOI S. Separation of Ag(I) by ion exchange and cementation from a raffinate containing Ag(I), Ni(Ⅱ) and Zn(Ⅱ) and traces of Cu(Ⅱ) and Sn(Ⅱ)[J]. Processes, 2018, 6(8).

    Google Scholar

    [52] 柳佳建, 陈伟, 周康根, 等. 赤泥中铁的回收利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 70-75.

    Google Scholar

    LIU J J, CHEN W, ZHOU K G, et al. Research progress of iron recovery from red mud[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 70-75.

    Google Scholar

    [53] CHOI S, YOO K, ALORROl R D, et al. Cementation of Co ion in leach solution using Zn powder followed by magnetic separation of cementation-precipitate for recovery of unreacted Zn powder[J]. Minerals Engineering, 2020, 145.

    Google Scholar

    [54] 韩桂洪, 黄艳芳, 刘兵兵, 等. 一种基于浮游萃取系统分离稀贵金属的方法: CN112538570A[P]. 2021-03-23.

    Google Scholar

    HAN G H, HUANG Y F, LIU B B, et al. A method for separating rare metals based on planktonic extraction system: CN112538570A[P]. 2021-03-23.

    Google Scholar

    [55] 韩桂洪, 刘兵兵, 黄艳芳, 等. 一种基于浮游萃取的溶解态高相似稀贵金属富集分离方法: CN111206150B[P]. 2022-01-28.

    Google Scholar

    HAN G H, LIU B B, HUANG Y F, et al. A method for enrichment and separation of highly similar rare metals in dissolved state based on planktonic extraction: CN111206150B[P]. 2022-01-28.

    Google Scholar

    [56] 韩桂洪, 刘兵兵, 黄艳芳, 等. 一种基于浮游萃取的钨钼选择性分离方法: CN111187908B[P]. 2022-01-28.

    Google Scholar

    HAN G H, LIU B B, HUANG Y F, et al. A selective separation method of tungsten and molybdenum based on planktonic extraction: CN111187908B[P]. 2022-01-28.

    Google Scholar

    [57] KANI O S M, AZIZITORGHABEH A, RASHCHI F. Recovery of Zn(Ⅱ), Mn(Ⅱ) and Co(Ⅱ) from the zinc plant residue using the solvent extraction with CYANEX 302 and D2EHPA/TBP: stoichiometry and structural studies[J]. Minerals Engineering, 2021, 169.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(3126) PDF downloads(460) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint