2016 Vol. 35, No. 11
Article Contents

DENG Qi, WANG Zhengjiang, WANG Jian, HU Zhizhong, CUI Xiaozhuang, DU Qiuding, MA Long, XIONG Xiaohui, YANG Fei. 800~780Ma continental rift magmatism in the eastern part of the Jiangnan Orogen: Implications from~790Ma aluminous A-type granites in Zhejiang-Anhui-Jiangxi border area[J]. Geological Bulletin of China, 2016, 35(11): 1855-1868.
Citation: DENG Qi, WANG Zhengjiang, WANG Jian, HU Zhizhong, CUI Xiaozhuang, DU Qiuding, MA Long, XIONG Xiaohui, YANG Fei. 800~780Ma continental rift magmatism in the eastern part of the Jiangnan Orogen: Implications from~790Ma aluminous A-type granites in Zhejiang-Anhui-Jiangxi border area[J]. Geological Bulletin of China, 2016, 35(11): 1855-1868.

800~780Ma continental rift magmatism in the eastern part of the Jiangnan Orogen: Implications from~790Ma aluminous A-type granites in Zhejiang-Anhui-Jiangxi border area

  • In this paper, the authors report geochronological and geochemical data obtained for Lingshan granite porphyries of the eastern Jiangnan Orogen in the Zhejiang-Anhui-Jiangxi border area. Zircon LA-ICP-MS U-Pb dating of Lingshan granite porphyries shows that these rocks were crystallized at 791.8±2.6Ma. Lingshan granite porphyries are characterized by high Si, high TFeO/ (TFeO+MgO)ratio, low Mg, Ca, Mn, and P, and peraluminous nature (A/CNK=1.04~1.18); REE data show that the granite porphyries have high concentrations of Rb, Ga, Th, Zr, Y, but are depleted in Sr, P, Ti, Ba; additionally, the granite porphyries have high total REE concentrations and high LREE/HREE ratio, exhibiting strong negative Eu anomalies; these characteristics are consistent with features of the typical aluminous A-type granite. Geochemical analysis and results of previous researches show that the Lingshan granite porphyries were formed in a continental rift environment, and most likely derived from partial melting of juvenile crust. In combination with the previous study, the authors hold that the magmatic activities that occurred between 800 and 780 Ma not only played an important role in the formation of South China Neoproterozoic basin but also has important geological significance for the study of the tectonic environment during this period and calibration of sedimentary cycle during Banxi period.
  • 加载中
  • [1] Eby G N. Chemical subdivision of the A-type granitoids:petrogenetic and tectonic implications[J]. Lithos, 1990, 26:115-134.

    Google Scholar

    [2] 吴锁平, 王梅英, 戚开静. A型花岗岩研究现状及其评述[J]. 岩石矿物学杂志, 2007, 26(1):57-66.

    Google Scholar

    [3] Zhao G C, Cawood P A. Precambrian Geology of China[J]. Precambrian Research, 2012, 222/223:13-54.

    Google Scholar

    [4] 高林志, 戴传固, 刘燕学, 等. 黔东南-桂北地区四堡群凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义[J]. 地质通报, 2010, 29(9):1259-1267.

    Google Scholar

    [5] 高林志, 陈峻, 丁孝忠, 等. 湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄——对武陵运动的制约[J]. 地质通报, 2011, 30(7):1001-1008.

    Google Scholar

    [6] Li Z X, Wartho J A, Occhipinti S, et al. Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia:New mica 40Ar/39Ar dating and SHRIMP U-Pb detrital zircon provenance constraints[J]. Precambrian Research, 2007, 159:79-94.

    Google Scholar

    [7] Li X H, Li W X, Li Z X, et al. 850-790Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China:A major episode of continental rift magmatism during the breakup of Rodinia[J]. Lithos, 2008, 102:341-357.

    Google Scholar

    [8] Li W X, Li X H, Li Z X. Middle Neoproterozoic syn-rifting volcanic rocks in Guangfeng, South China:petrogenesis and tectonic signi ficance[J]. Geological Magazine, 2008, 145:475-489.

    Google Scholar

    [9] Li W X, Li X H, Li Z X, et al. Obduction-type granites within the NE Jiangxi Ophiolite:Implications for the final amalgamation between the Yangtze and Cathaysia Blocks[J]. Gondwana Research, 2008, 13:288-301.

    Google Scholar

    [10] Li X H, Li W X, Li Z X, et al. Amalgamation between the Yangtze and Cathaysia Blocks in South China:Constraints from SHRIMP U-Pb Zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 2009, 174:117-128.

    Google Scholar

    [11] Li W X, Li X H, Li Z X. Ca. 850Ma bimodal volcanic rocks in northeastern Jiangxi province, South China:initial extension during the breakup of Rodinia?[J]. American Journal of Science, 2010, 310:951-980.

    Google Scholar

    [12] Wang J, Li Z X. History of Neoproterozoic rift basins in South China:implications for Rodinia break-up[J]. Precambrian Research, 2003, 122:141-158.

    Google Scholar

    [13] Wang X L, Zhou J C, Qiu J S, et al. Geochemistry of the Meso-to Neoproterozoic basic-acid rocks from Hunan Province, South China:implications for the evolution of the western Jiangnan orogen[J]. Precambrian Research, 2004, 135:79-103.

    Google Scholar

    [14] Wang X L, Zhou J C, Qiu J S, et al. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China:Implications for tectonic evolution[J]. Precambrian Research, 2006, 145:111-130.

    Google Scholar

    [15] Wang X L, Zhou J C, Griffin W L, et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen:Dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 2007, 159:117-131.

    Google Scholar

    [16] Wang Q, Wyman D A, Li Z X, et al. Petrology, geochronology and geochemistry of ca. 780Ma A-type granites in South China:Petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia[J]. Precambrian Research, 2010, 178:185-208.

    Google Scholar

    [17] Wang X L, Shu L S, Xing G F, et al. Post-orogenic extension in the eastern part of the Jiangnan orogen:Evidence from ca 800-760Ma volcanic rocks[J]. Precambrian Research, 2012, 222/223:404-423.

    Google Scholar

    [18] Wang Y J, Zhang A M, Cawood P A, et al. Geochronological, geochemical and Nd-Hf-Os isotopic fingerprinting of an early Neoproterozoic arc-back-arc system in South China and its accretionary assembly along the margin of Rodinia[J]. Precambrian Research, 2013, 231:343-371.

    Google Scholar

    [19] Wang Y J, Zhang Y Z, Fan W M, et al. Early Neoproterozoic accretionary assemblage in the Cathaysia Block:Geochronological, LuHf isotopic and geochemical evidence from granitoid gneisses[J]. Precambrian Research, 2014, 249:144-161.

    Google Scholar

    [20] Wang J, Zhou X L, Deng Q, et al. Sedimentary successions and the onset of the Neoproterozoic Jiangnan sub-basin in the Nanhua rift, South China[J]. International Journal of Earth Sciences, 2015, 104:521-539.

    Google Scholar

    [21] Zheng Y F, Wu R X, Wu Y B, et al. Rift melting of juvenile arcderived crust:Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China[J]. Precambrian Research, 2008, 163:351-383.

    Google Scholar

    [22] Zhou J C, Wang X L, Qiu J S. Geochronology of Neoproterozoic Mafic Rocks and Sandstones from Northeastern Guizhou, South China:Coeval Arc Magmatism and Sedimentation[J]. Precambrian Research, 2009, 170:27-42.

    Google Scholar

    [23] 薛怀民, 马芳, 宋永勤, 等. 江南造山带东段新元古代花岗岩组合的年代学和地球化学:对扬子与华夏地块拼合时间与过程的约束[J]. 岩石学报, 2010, 26(11):3215-3244.

    Google Scholar

    [24] 王自强, 高林志, 丁孝忠, 等."江南造山带"变质基底形成的构造环境及演化特征[J]. 地质论评, 2012, 58(3):401-413.

    Google Scholar

    [25] Zhao J H, Zhou M F, Yan D P, et al. Reappraisal of the ages of Neoproterozoic strata in South China:No connection with the Grenvillian orogeny[J]. Geology, 2011, 39(4):299-302.

    Google Scholar

    [26] Zhao G C. Jiangnan Orogen in South China:Developing from divergent double subduction[J]. Gondwana Research, 2015, 27:1173-1180.

    Google Scholar

    [27] Li X H, Li Z X, Ge W C, et al. Neoproterozoic granitoids in South China:crustal melting above a mantle plume at ca. 825Ma[J]. Precambrian Research, 2003, 122:45-83.

    Google Scholar

    [28] Yang C, Li X H, Wang X C, et al. Mid-Neoproterozoic angular unconformity in the Yangtze Block revisited:Insights from detrital zircon U-Pb age and Hf-O isotopes[J]. Precambrian Research, 2015, 266:165-178.

    Google Scholar

    [29] Li Z X, Li X H, Zhou H W, et al. Grencillian continental collision in south China:New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology, 2002, 30:163-166.

    Google Scholar

    [30] Li X H, Li Z X, Zhou H W, et al. U-Pb zircon geochronology, geochemisty and Nd isotopic study of the Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China:implications for the initial rifting of Rodinia[J]. Precambrian Research, 2002, 113:135-154.

    Google Scholar

    [31] Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents:evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research, 2003, 122:85-109.

    Google Scholar

    [32] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia:a synthesis[J]. Precambrian Research, 2008, 160:179-210.

    Google Scholar

    [33] Wang X C, Li X H, Li W X, et al. Ca. 825Ma komatiitic basalts in South China:first evidence for >1500℃ mantle melts by a Rodinian mantle plume[J]. Geology, 2007, 35:1103-1106.

    Google Scholar

    [34] Wang X C, Li X H, Li W X, et al. The Bikou basalts in northwestern Yangtze Block, South China:remains of 820-810Ma continental flood basalts[J]. Geological Society of American Bulletin, 2008, 120:1478-1492.

    Google Scholar

    [35] Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 2002, 196:51-67.

    Google Scholar

    [36] Zhou M F, Kennedy A K, Sun M, et al. Neoproterozoic Arc-Related Mafic Intrusions along the Northern Margin of South China:Implications for the Accretion of Rodinia[J]. The journal of Geology, 2002, 110:611-618.

    Google Scholar

    [37] Zhou M F, Ma Y, Yan D P, et al. The Yanbian Terrane (Southern Sichuan Province, SW China):a Neoproterozoic arc assemblage in the western margin of the Yangtze Block[J]. Precambrian Research, 2006, 144:19-38.

    Google Scholar

    [38] Zhou M F, Yan D P, Wang C L, et al. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China):Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China[J]. Earth and Planetary Science Letters, 2006, 248:286-300.

    Google Scholar

    [39] Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:Implications for growth and reworking of continental crust[J]. Lithos, 2007, 96:127-150.

    Google Scholar

    [40] Zhang C L, Li H K, Santosh M. Revisiting the tectonic evolution of South China:interaction between the Rodinia superplume and plate subduction?[J] Terra Nova, 2013, 25(3):212-220.

    Google Scholar

    [41] Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 2008, 247(1/2):133-153.

    Google Scholar

    [42] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43.

    Google Scholar

    [43] Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23:1093-1101.

    Google Scholar

    [44] Hu Z C, Liu Y S, Gao S, et al. A"wire"signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2012, 78:50-57.

    Google Scholar

    [45] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643.

    Google Scholar

    [46] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42:313-345.

    Google Scholar

    [47] Whalen J B, Currie K L, Chappell B W. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95:407-419.

    Google Scholar

    [48] 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6):1217-1238.

    Google Scholar

    [49] Yao J L, Shu L S, Santosh M. Neoproterozoic arc-trench system and breakup of the South China Craton:Constraints from NMORB type and arc-related mafic rocks, and anorogenic granite in the Jiangnan orogenic belt[J]. Precambrian Research, 2014, 247:187-207.

    Google Scholar

    [50] King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia[J]. Journal of Petrology, 1997, 38(3):371-391.

    Google Scholar

    [51] Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46:535-551.

    Google Scholar

    [52] 王强, 赵振华, 熊小林.桐柏-大别造山带燕山晚期A型花岗岩的厘定[J]. 岩石矿物学杂志, 2000, 19(4):297-306.

    Google Scholar

    [53] Watson E B, Harrison T M. Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983, 64:295-304.

    Google Scholar

    [54] Collins W J, Beams S D, White A J, et al. Nature and origin of Atype granite with particular reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 8:189-200.

    Google Scholar

    [55] Eby G N. Chemical subdivision of the A-type granitoids:petrogenetic and tectonic implications[J]. Geology, 1992, 20:641-644.

    Google Scholar

    [56] Barbarin B. A review of the relationships between granitoid types:their origins and their geodynamic environments[J]. Lithos, 1999, 46:605-626.

    Google Scholar

    [57] Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China:age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187:143-173.

    Google Scholar

    [58] Yang J H, Wu F Y, Chung S L, et al. A hybrid origin for Qianshan A-type granite, Northeast China:Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89:89-106.

    Google Scholar

    [59] 汪正江, 王剑, 段太忠, 等. 扬子克拉通内新元古代中期酸性火山岩的年代学及其地质意义[J]. 中国科学(D辑), 2010, 40(11):1543-1551.

    Google Scholar

    [60] 汪正江, 王剑, 谢渊, 等. 重庆秀山凉桥板溪群红子溪组凝灰岩SHRIMP锆石测年及其意义[J]. 中国地质, 2009, 36(4):761-768.

    Google Scholar

    [61] 邓奇, 王剑, 汪正江, 等.扬子北缘西乡群大石沟组和三郎铺组凝灰岩锆石U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版), 2013, 43(3):797-808.

    Google Scholar

    [62] Yan Q R, Hanson A D, Wang Z Q, et al. Neoproterozoic Subduction and Rifting on the Northern Margin of the Yangtze Plate, China:Implications for Rodinia Reconstruction[J]. International Geology Review, 2004, 46:817-832.

    Google Scholar

    [63] 江新胜, 王剑, 崔晓庄, 等. 滇中新元古代澄江组锆石SHRIMP U-Pb年代学研究及其地质意义[J]. 中国科学(D辑), 2012, 42(10):1496-1507.

    Google Scholar

    [64] Ernst R E, Wingate M T D, Buchan K L, et al. Global record of 1600-700Ma large igneous provinces (LIPs):Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia super-continents[J]. Precambrian Research, 2008, 160:159-178.

    Google Scholar

    [65] 汪正江, 王剑, 江新胜, 等. 华南扬子地区新元古代地层划分对比研究新进展[J]. 地质论评, 2015, 61(1):1-22.

    Google Scholar

    [66] Wang X L, Zhao G C, Zhou J C, et al. Geochronology and Hf Isotopes of Zircon from Volcanic Rocks of the Shuangqiaoshan Group, South China:Implications for the Neoproterozoic Tectonic Evolution of the Eastern Jiangnan Orogen[J]. Gondwana Research, 2008, 14:355-367.

    Google Scholar

    [67] Li Z X, Evans D A D, Zhang S H. A 90° Spin on Rodinia:Possible Causal Links between the Neoproterozoic Supercontinent, Superplume, True Polar Wander and Low-Latitude Glaciation[J]. Earth and Planetary Science Letters, 2004, 220:409-421.

    Google Scholar

    [68] Huang X L, Xu Y G, Li X H, et al. Petrogenesis and Tectonic Implications of Neoproterozoic, Highly Fractionated A-Type Granites from Mianning, South China[J]. Precambrian Research, 2008, 165:190-204.

    Google Scholar

    [69] Li X H, Zhu W G, Zhong H, et al. The Tongde Picritic Dikes in the Western Yangtze Block:Evidence for Ca. 800Ma Mantle Plume Magmatism in South China during the Breakup of Rodinia[J]. The Journal of Geology, 2010, 118:509-522.

    Google Scholar

    [70] 任光明, 庞维华, 孙志明, 等.扬子西缘登相营群基性岩墙锆石U-Pb年代学及岩石地球化学特征[J]. 成都理工大学学报(自然科学版), 2013, 40(1):66-79.

    Google Scholar

    [71] 林广春, 李献华, 李武显.川西新元古代基性岩墙群的SHRIMP锆石U-Pb年龄、元素和Nd-Hf同位素地球化学:岩石成因与构造意义[J]. 中国科学(D辑):地球科学, 2006, 36(7):630-645.

    Google Scholar

    [72] 李献华, 王选策, 李武显, 等.华南新元古代玄武质岩石成因与构造意义:从造山运动到陆内裂谷[J]. 地球化学, 2008, 37(4):382-398.

    Google Scholar

    [73] Wang X C, Li X H, Li W X, et al. Variable involvements of mantle plumes in the genesis of mid-Neoproterozoic basaltic rocks in South China:A review[J]. Gondwana Research, 2009, 15:381-395.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1102) PDF downloads(253) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint