[1] |
Eby G N. Chemical subdivision of the A-type granitoids:petrogenetic and tectonic implications[J]. Lithos, 1990, 26:115-134.
Google Scholar
|
[2] |
吴锁平, 王梅英, 戚开静. A型花岗岩研究现状及其评述[J]. 岩石矿物学杂志, 2007, 26(1):57-66.
Google Scholar
|
[3] |
Zhao G C, Cawood P A. Precambrian Geology of China[J]. Precambrian Research, 2012, 222/223:13-54.
Google Scholar
|
[4] |
高林志, 戴传固, 刘燕学, 等. 黔东南-桂北地区四堡群凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义[J]. 地质通报, 2010, 29(9):1259-1267.
Google Scholar
|
[5] |
高林志, 陈峻, 丁孝忠, 等. 湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄——对武陵运动的制约[J]. 地质通报, 2011, 30(7):1001-1008.
Google Scholar
|
[6] |
Li Z X, Wartho J A, Occhipinti S, et al. Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia:New mica 40Ar/39Ar dating and SHRIMP U-Pb detrital zircon provenance constraints[J]. Precambrian Research, 2007, 159:79-94.
Google Scholar
|
[7] |
Li X H, Li W X, Li Z X, et al. 850-790Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China:A major episode of continental rift magmatism during the breakup of Rodinia[J]. Lithos, 2008, 102:341-357.
Google Scholar
|
[8] |
Li W X, Li X H, Li Z X. Middle Neoproterozoic syn-rifting volcanic rocks in Guangfeng, South China:petrogenesis and tectonic signi ficance[J]. Geological Magazine, 2008, 145:475-489.
Google Scholar
|
[9] |
Li W X, Li X H, Li Z X, et al. Obduction-type granites within the NE Jiangxi Ophiolite:Implications for the final amalgamation between the Yangtze and Cathaysia Blocks[J]. Gondwana Research, 2008, 13:288-301.
Google Scholar
|
[10] |
Li X H, Li W X, Li Z X, et al. Amalgamation between the Yangtze and Cathaysia Blocks in South China:Constraints from SHRIMP U-Pb Zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 2009, 174:117-128.
Google Scholar
|
[11] |
Li W X, Li X H, Li Z X. Ca. 850Ma bimodal volcanic rocks in northeastern Jiangxi province, South China:initial extension during the breakup of Rodinia?[J]. American Journal of Science, 2010, 310:951-980.
Google Scholar
|
[12] |
Wang J, Li Z X. History of Neoproterozoic rift basins in South China:implications for Rodinia break-up[J]. Precambrian Research, 2003, 122:141-158.
Google Scholar
|
[13] |
Wang X L, Zhou J C, Qiu J S, et al. Geochemistry of the Meso-to Neoproterozoic basic-acid rocks from Hunan Province, South China:implications for the evolution of the western Jiangnan orogen[J]. Precambrian Research, 2004, 135:79-103.
Google Scholar
|
[14] |
Wang X L, Zhou J C, Qiu J S, et al. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China:Implications for tectonic evolution[J]. Precambrian Research, 2006, 145:111-130.
Google Scholar
|
[15] |
Wang X L, Zhou J C, Griffin W L, et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen:Dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 2007, 159:117-131.
Google Scholar
|
[16] |
Wang Q, Wyman D A, Li Z X, et al. Petrology, geochronology and geochemistry of ca. 780Ma A-type granites in South China:Petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia[J]. Precambrian Research, 2010, 178:185-208.
Google Scholar
|
[17] |
Wang X L, Shu L S, Xing G F, et al. Post-orogenic extension in the eastern part of the Jiangnan orogen:Evidence from ca 800-760Ma volcanic rocks[J]. Precambrian Research, 2012, 222/223:404-423.
Google Scholar
|
[18] |
Wang Y J, Zhang A M, Cawood P A, et al. Geochronological, geochemical and Nd-Hf-Os isotopic fingerprinting of an early Neoproterozoic arc-back-arc system in South China and its accretionary assembly along the margin of Rodinia[J]. Precambrian Research, 2013, 231:343-371.
Google Scholar
|
[19] |
Wang Y J, Zhang Y Z, Fan W M, et al. Early Neoproterozoic accretionary assemblage in the Cathaysia Block:Geochronological, LuHf isotopic and geochemical evidence from granitoid gneisses[J]. Precambrian Research, 2014, 249:144-161.
Google Scholar
|
[20] |
Wang J, Zhou X L, Deng Q, et al. Sedimentary successions and the onset of the Neoproterozoic Jiangnan sub-basin in the Nanhua rift, South China[J]. International Journal of Earth Sciences, 2015, 104:521-539.
Google Scholar
|
[21] |
Zheng Y F, Wu R X, Wu Y B, et al. Rift melting of juvenile arcderived crust:Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China[J]. Precambrian Research, 2008, 163:351-383.
Google Scholar
|
[22] |
Zhou J C, Wang X L, Qiu J S. Geochronology of Neoproterozoic Mafic Rocks and Sandstones from Northeastern Guizhou, South China:Coeval Arc Magmatism and Sedimentation[J]. Precambrian Research, 2009, 170:27-42.
Google Scholar
|
[23] |
薛怀民, 马芳, 宋永勤, 等. 江南造山带东段新元古代花岗岩组合的年代学和地球化学:对扬子与华夏地块拼合时间与过程的约束[J]. 岩石学报, 2010, 26(11):3215-3244.
Google Scholar
|
[24] |
王自强, 高林志, 丁孝忠, 等."江南造山带"变质基底形成的构造环境及演化特征[J]. 地质论评, 2012, 58(3):401-413.
Google Scholar
|
[25] |
Zhao J H, Zhou M F, Yan D P, et al. Reappraisal of the ages of Neoproterozoic strata in South China:No connection with the Grenvillian orogeny[J]. Geology, 2011, 39(4):299-302.
Google Scholar
|
[26] |
Zhao G C. Jiangnan Orogen in South China:Developing from divergent double subduction[J]. Gondwana Research, 2015, 27:1173-1180.
Google Scholar
|
[27] |
Li X H, Li Z X, Ge W C, et al. Neoproterozoic granitoids in South China:crustal melting above a mantle plume at ca. 825Ma[J]. Precambrian Research, 2003, 122:45-83.
Google Scholar
|
[28] |
Yang C, Li X H, Wang X C, et al. Mid-Neoproterozoic angular unconformity in the Yangtze Block revisited:Insights from detrital zircon U-Pb age and Hf-O isotopes[J]. Precambrian Research, 2015, 266:165-178.
Google Scholar
|
[29] |
Li Z X, Li X H, Zhou H W, et al. Grencillian continental collision in south China:New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology, 2002, 30:163-166.
Google Scholar
|
[30] |
Li X H, Li Z X, Zhou H W, et al. U-Pb zircon geochronology, geochemisty and Nd isotopic study of the Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China:implications for the initial rifting of Rodinia[J]. Precambrian Research, 2002, 113:135-154.
Google Scholar
|
[31] |
Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents:evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research, 2003, 122:85-109.
Google Scholar
|
[32] |
Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia:a synthesis[J]. Precambrian Research, 2008, 160:179-210.
Google Scholar
|
[33] |
Wang X C, Li X H, Li W X, et al. Ca. 825Ma komatiitic basalts in South China:first evidence for >1500℃ mantle melts by a Rodinian mantle plume[J]. Geology, 2007, 35:1103-1106.
Google Scholar
|
[34] |
Wang X C, Li X H, Li W X, et al. The Bikou basalts in northwestern Yangtze Block, South China:remains of 820-810Ma continental flood basalts[J]. Geological Society of American Bulletin, 2008, 120:1478-1492.
Google Scholar
|
[35] |
Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 2002, 196:51-67.
Google Scholar
|
[36] |
Zhou M F, Kennedy A K, Sun M, et al. Neoproterozoic Arc-Related Mafic Intrusions along the Northern Margin of South China:Implications for the Accretion of Rodinia[J]. The journal of Geology, 2002, 110:611-618.
Google Scholar
|
[37] |
Zhou M F, Ma Y, Yan D P, et al. The Yanbian Terrane (Southern Sichuan Province, SW China):a Neoproterozoic arc assemblage in the western margin of the Yangtze Block[J]. Precambrian Research, 2006, 144:19-38.
Google Scholar
|
[38] |
Zhou M F, Yan D P, Wang C L, et al. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China):Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China[J]. Earth and Planetary Science Letters, 2006, 248:286-300.
Google Scholar
|
[39] |
Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:Implications for growth and reworking of continental crust[J]. Lithos, 2007, 96:127-150.
Google Scholar
|
[40] |
Zhang C L, Li H K, Santosh M. Revisiting the tectonic evolution of South China:interaction between the Rodinia superplume and plate subduction?[J] Terra Nova, 2013, 25(3):212-220.
Google Scholar
|
[41] |
Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 2008, 247(1/2):133-153.
Google Scholar
|
[42] |
Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43.
Google Scholar
|
[43] |
Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23:1093-1101.
Google Scholar
|
[44] |
Hu Z C, Liu Y S, Gao S, et al. A"wire"signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2012, 78:50-57.
Google Scholar
|
[45] |
Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643.
Google Scholar
|
[46] |
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42:313-345.
Google Scholar
|
[47] |
Whalen J B, Currie K L, Chappell B W. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95:407-419.
Google Scholar
|
[48] |
吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6):1217-1238.
Google Scholar
|
[49] |
Yao J L, Shu L S, Santosh M. Neoproterozoic arc-trench system and breakup of the South China Craton:Constraints from NMORB type and arc-related mafic rocks, and anorogenic granite in the Jiangnan orogenic belt[J]. Precambrian Research, 2014, 247:187-207.
Google Scholar
|
[50] |
King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia[J]. Journal of Petrology, 1997, 38(3):371-391.
Google Scholar
|
[51] |
Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46:535-551.
Google Scholar
|
[52] |
王强, 赵振华, 熊小林.桐柏-大别造山带燕山晚期A型花岗岩的厘定[J]. 岩石矿物学杂志, 2000, 19(4):297-306.
Google Scholar
|
[53] |
Watson E B, Harrison T M. Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983, 64:295-304.
Google Scholar
|
[54] |
Collins W J, Beams S D, White A J, et al. Nature and origin of Atype granite with particular reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 8:189-200.
Google Scholar
|
[55] |
Eby G N. Chemical subdivision of the A-type granitoids:petrogenetic and tectonic implications[J]. Geology, 1992, 20:641-644.
Google Scholar
|
[56] |
Barbarin B. A review of the relationships between granitoid types:their origins and their geodynamic environments[J]. Lithos, 1999, 46:605-626.
Google Scholar
|
[57] |
Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China:age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187:143-173.
Google Scholar
|
[58] |
Yang J H, Wu F Y, Chung S L, et al. A hybrid origin for Qianshan A-type granite, Northeast China:Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89:89-106.
Google Scholar
|
[59] |
汪正江, 王剑, 段太忠, 等. 扬子克拉通内新元古代中期酸性火山岩的年代学及其地质意义[J]. 中国科学(D辑), 2010, 40(11):1543-1551.
Google Scholar
|
[60] |
汪正江, 王剑, 谢渊, 等. 重庆秀山凉桥板溪群红子溪组凝灰岩SHRIMP锆石测年及其意义[J]. 中国地质, 2009, 36(4):761-768.
Google Scholar
|
[61] |
邓奇, 王剑, 汪正江, 等.扬子北缘西乡群大石沟组和三郎铺组凝灰岩锆石U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版), 2013, 43(3):797-808.
Google Scholar
|
[62] |
Yan Q R, Hanson A D, Wang Z Q, et al. Neoproterozoic Subduction and Rifting on the Northern Margin of the Yangtze Plate, China:Implications for Rodinia Reconstruction[J]. International Geology Review, 2004, 46:817-832.
Google Scholar
|
[63] |
江新胜, 王剑, 崔晓庄, 等. 滇中新元古代澄江组锆石SHRIMP U-Pb年代学研究及其地质意义[J]. 中国科学(D辑), 2012, 42(10):1496-1507.
Google Scholar
|
[64] |
Ernst R E, Wingate M T D, Buchan K L, et al. Global record of 1600-700Ma large igneous provinces (LIPs):Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia super-continents[J]. Precambrian Research, 2008, 160:159-178.
Google Scholar
|
[65] |
汪正江, 王剑, 江新胜, 等. 华南扬子地区新元古代地层划分对比研究新进展[J]. 地质论评, 2015, 61(1):1-22.
Google Scholar
|
[66] |
Wang X L, Zhao G C, Zhou J C, et al. Geochronology and Hf Isotopes of Zircon from Volcanic Rocks of the Shuangqiaoshan Group, South China:Implications for the Neoproterozoic Tectonic Evolution of the Eastern Jiangnan Orogen[J]. Gondwana Research, 2008, 14:355-367.
Google Scholar
|
[67] |
Li Z X, Evans D A D, Zhang S H. A 90° Spin on Rodinia:Possible Causal Links between the Neoproterozoic Supercontinent, Superplume, True Polar Wander and Low-Latitude Glaciation[J]. Earth and Planetary Science Letters, 2004, 220:409-421.
Google Scholar
|
[68] |
Huang X L, Xu Y G, Li X H, et al. Petrogenesis and Tectonic Implications of Neoproterozoic, Highly Fractionated A-Type Granites from Mianning, South China[J]. Precambrian Research, 2008, 165:190-204.
Google Scholar
|
[69] |
Li X H, Zhu W G, Zhong H, et al. The Tongde Picritic Dikes in the Western Yangtze Block:Evidence for Ca. 800Ma Mantle Plume Magmatism in South China during the Breakup of Rodinia[J]. The Journal of Geology, 2010, 118:509-522.
Google Scholar
|
[70] |
任光明, 庞维华, 孙志明, 等.扬子西缘登相营群基性岩墙锆石U-Pb年代学及岩石地球化学特征[J]. 成都理工大学学报(自然科学版), 2013, 40(1):66-79.
Google Scholar
|
[71] |
林广春, 李献华, 李武显.川西新元古代基性岩墙群的SHRIMP锆石U-Pb年龄、元素和Nd-Hf同位素地球化学:岩石成因与构造意义[J]. 中国科学(D辑):地球科学, 2006, 36(7):630-645.
Google Scholar
|
[72] |
李献华, 王选策, 李武显, 等.华南新元古代玄武质岩石成因与构造意义:从造山运动到陆内裂谷[J]. 地球化学, 2008, 37(4):382-398.
Google Scholar
|
[73] |
Wang X C, Li X H, Li W X, et al. Variable involvements of mantle plumes in the genesis of mid-Neoproterozoic basaltic rocks in South China:A review[J]. Gondwana Research, 2009, 15:381-395.
Google Scholar
|