2016 Vol. 35, No. 11
Article Contents

HU Peiyuan, LI Cai, ZHAI Qingguo, WANG Ming, XIE Chaoming, WU Yanwang. The gabbros from the Leiwuqi area, eastern Tibet: Records of the Late Paleozoic break-up of the northern Gondwana[J]. Geological Bulletin of China, 2016, 35(11): 1845-1854.
Citation: HU Peiyuan, LI Cai, ZHAI Qingguo, WANG Ming, XIE Chaoming, WU Yanwang. The gabbros from the Leiwuqi area, eastern Tibet: Records of the Late Paleozoic break-up of the northern Gondwana[J]. Geological Bulletin of China, 2016, 35(11): 1845-1854.

The gabbros from the Leiwuqi area, eastern Tibet: Records of the Late Paleozoic break-up of the northern Gondwana

  • The Tibetan Plateau, which is located in the transitional zone of the Gondwana and Laurasia, plays a key role in studying the supercontinental convergence and cracking of Gondwana. As a result of the opening of the Tethys Oceans, the northern Gondwana started to rift during Late Paleozoic. Continental intraplate basaltic magmatism is typically considered to have been linked with continental break-up. Permian continental intraplate basaltic rocks have been recognized in the Tibetan Plateau and are considered as recording the Late Paleozoic rift of the northern Gondwana. However, these rocks mainly occur in the Qiangtang and Panjal Traps of western Tibetan Plateau, but no coeval basaltic rocks have been reported in eastern Tibetan Plateau. In this paper the authors present the results of the study of the Early Permian gabbros in the Leiwuqi area of eastern Tibetan Plateau. LA-ICP-MS zircon U–Pb dating reveals that the gabbros formed at 280±2Ma. The geochemical features of these gabbros are comparable with those of continental intraplate basalts (WPB). They exhibit positive values of zircon εHf(t) (5.1~11.5), suggesting a depleted mantle origin. Taking into account previous data, the authors hold that these gabbros were related to the Early Permian Qiangtang-Panjal mantle plume. There-fore, Early Permian continental intraplate basaltic rocks developed in both western and eastern Tibetan Plateau and they were linked with the continental break-up of northern Gondwana and the opening of the Bangong Co-Nujiang Tethys ocean.
  • 加载中
  • [1] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogeny[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:211-280.

    Google Scholar

    [2] Metcalfe I. Late Palaeozoic and Mesozoic tectonic and palaeogeographic evolution of SE Asia[J]. Geological Society London Special Publications, 2009, 315:7-23.

    Google Scholar

    [3] Metcalfe I. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66:1-33.

    Google Scholar

    [4] Stampfli G M, Borel G D. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones[J]. Earth and Planetary Science Letters, 2002, 196(1/2):17-33.

    Google Scholar

    [5] Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53:3-14.

    Google Scholar

    [6] Zhai Q G, Li C, Wang J, et al. SHRIMP U-Pb dating and Hf isotopic analyses of zircons from the mafic dyke swarms in central Qiangtang area, Northern[J]. Chinese Science Bulletin, 2009, 54(13):2279-2285.

    Google Scholar

    [7] Zhai Q G, Jahn B M, Su L, et al. SHRIMP zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications[J]. Lithos, 2013, 174:28-43.

    Google Scholar

    [8] Wang M, Li C, Wu Y W, et al. Geochronology, geochemistry, Hf isotopic compositions and formation mechanism of radial mafic dikes in northern Tibet[J]. International Geology Review, 2014, 56:187-205.

    Google Scholar

    [9] Zhu D C, Mo X X, Zhao Z D, et al. Presence of Permian extension-and arc-type magmatism in southern Tibet:Paleogeographic implications[J]. GSA Bulletin, 2010, 122:197-208.

    Google Scholar

    [10] Garzanti E, Le Fort B, Sciunnach D, et al. First report of Lower Permian basalts in South Tibet:tholeiitic magmatism during breakup and incipient opening of Neotethys[J]. Journal of Asian Earth Sciences, 1999, 17:533-546.

    Google Scholar

    [11] Chauvet F, Lapierre H, Bosch D, et al. Geochemistry of the Panjal Traps basalts (NW Himalaya):records of the Pangea Permian break-up[J]. Bulletin de la Société Géologique de France, 2008, 179:383-395.

    Google Scholar

    [12] 李才. 青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年[J]. 地质论评, 2008, 54:105-119.

    Google Scholar

    [13] 李才, 谢尧武, 蒋光武, 等. 藏东吉塘地区冈瓦纳相冰海杂砾岩的特征及其意义[J]. 地质通报, 2008, 27(10):1654-1658.

    Google Scholar

    [14] 曾庆高, 王保弟, 强巴扎西, 等. 藏东类乌齐地区花岗质片麻岩锆石Cameca U-Pb定年及其地质意义[J]. 地质通报, 2010, 29:1123-1128.

    Google Scholar

    [15] Hu P Y, Li C, Li J, et al. Zircon U-Pb-Hf isotopes and wholerock geochemistry of gneissic granites from the Jitang complex in Leiwuqi area, eastern Tibet, China:Record of the closure of the Paleo-Tethys Ocean[J]. Tectonophysics, 2014, 623:83-99.

    Google Scholar

    [16] 陶琰, 毕献武, 李金高, 等. 西藏吉塘花岗岩地球化学特征及成因[J]. 岩石学报, 2011, 27:2763-2774.

    Google Scholar

    [17] 王保弟, 王立全, 强巴扎西, 等. 早三叠世北澜沧江结合带碰撞作用:类乌齐花岗质片麻岩年代学、地球化学及Hf同位素证据[J]. 岩石学报, 2011, 27:1178-1180.

    Google Scholar

    [18] 邱军强, 强巴扎西, 李虎, 等. 澜沧江结合带中二叠世达弄岩片的发现及特征[J]. 地质调查与研究, 2011, 34:258-267.

    Google Scholar

    [19] 强巴扎西, 谢尧武, 吴彦旺, 等. 藏东丁青蛇绿岩中堆晶辉长岩锆石SIMS U-Pb定年及其意义[J]. 地质通报, 2009, 28(9):1253-1258.

    Google Scholar

    [20] 王玉静, 王建平, 裴放. 西藏丁青蛇绿岩带中一个晚三叠世放射虫动物群[J]. 微体古生物学报, 2002, 19:323-336.

    Google Scholar

    [21] 李才, 谢尧武, 董永胜, 等. 藏东类乌齐一带吉塘岩群时代讨论及初步认识[J]. 地质通报, 2009, 28(9):2752-2762.

    Google Scholar

    [22] Ludwing K R. Using Isoplot/Ex, Version 3.00:A Geochronology Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publications, 2003, 4:1-70.

    Google Scholar

    [23] Wu F Y, Yang J H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234:105-126.

    Google Scholar

    [24] Woodhead J, Hergt J, Shelley M, et al. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geonmetries and concomitant age estimation[J]. Chemical Geology, 2004, 209:121-135.

    Google Scholar

    [25] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 8:1589-1604.

    Google Scholar

    [26] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20:325-343.

    Google Scholar

    [27] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalt:Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society London Special Publications, 1989, 42:313-345.

    Google Scholar

    [28] Rudnick R L, Fountain D M. Nature and composition of the continental crust:a lower crustal perspective[J]. Reviews of Geophysics, 1995, 33:267-309.

    Google Scholar

    [29] Fitton J G, Saunders A D, Norry M J, et al. Thermal and chemical structure of the Iceland plume[J]. Earth and Planetary Science Letters, 1997, 153:197-208.

    Google Scholar

    [30] Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic-rocks[J]. Contribution to Mineralogy and Petrology, 1979, 69:603-627.

    Google Scholar

    [31] Cabanis B, Lecolle M. Le diagramme La/10-Y/15-Nb/8:un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. Comptes rendus de l'Académie des sciences[J]. Série Ⅱ. Mécanique, physique, chimie, sciences de l'univers, sciences de la terre, 1989, 309:2023-2029.

    Google Scholar

    [32] Lapierre H, Samper A, Bosch D, et al. The Tethyan plume:geochemical diversity of Middle Permian basalts from the Oman rifted margin[J]. Lithos, 2004, 74:167-198.

    Google Scholar

    [33] 王明, 李才, 解超明, 等. 藏北羌塘南部冈玛错地区展金组玄武岩的成因及其构造意义[J]. 地质通报, 2014, 33(11):1768-1777.

    Google Scholar

    [34] 王明, 李才, 翟庆国, 等. 青藏高原羌塘南部晚古生代地幔柱?——来自基性-超基性岩的地球化学证据[J]. 地质通报, 2010, 29(12):1754-1772.

    Google Scholar

    [35] Zhu D C, Zhao Z D, Niu Y L, et al. 2011. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 39:727-730.

    Google Scholar

    [36] Zhu D C, Zhao Z D, Niu Y L, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23:1429-1454.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(909) PDF downloads(73) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint