2016 Vol. 35, No. 11
Article Contents

JING Xianqing, YANG Zhenyu, TONG Yabo, WANG Heng, HAN Zhirui, XU Yingchao. Inclination shallowing study of the Early-Neoproterozoic Liantuo Formation in South China and its paleogeographic implications[J]. Geological Bulletin of China, 2016, 35(11): 1797-1806.
Citation: JING Xianqing, YANG Zhenyu, TONG Yabo, WANG Heng, HAN Zhirui, XU Yingchao. Inclination shallowing study of the Early-Neoproterozoic Liantuo Formation in South China and its paleogeographic implications[J]. Geological Bulletin of China, 2016, 35(11): 1797-1806.

Inclination shallowing study of the Early-Neoproterozoic Liantuo Formation in South China and its paleogeographic implications

  • New dating data indicate that the Liantuo Formation ended at 715Ma, and hence the constraint of the paleolatitude of the Liantuo Formation will shed a light on the "Snowball Earth" theory. Researchers have obtained reliable paleomagnetic results from the Liantuo Formation, but the inclination shallowing has not been considered by them. In this paper, the authors obtained a corrected parameter by conducting a remnant anisotropy research on Liantuo Formation. The inclination shallowing in Liantuo Formation is 2.6°, which results in a latitude difference of 3.9°±6°. The reconstruction of the South China and Australia block at 720Ma shows the diamictite distribution from middle latitude to tropical region, which proves the "Snowball Earth" theory.
  • 加载中
  • [1] Cawood P A, Hawkesworth C J. Earth's middle age[J]. Geology, 2014, 42(6):503-506.

    Google Scholar

    [2] Kirschvink J L. Late Proterozoic low-latitude global glaciation:the snowball Earth[C]//The Proterozoic biosphere:a multidisciplinary study. Cambridge University Press, New York, 1992:51-52.

    Google Scholar

    [3] Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball earth[J]. Science, 1998, 281(5381):1342-1346.

    Google Scholar

    [4] Hyde W T, Crowley T J, Baum S K, et al. Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model[J]. Nature, 2000, 405(6785):425-429.

    Google Scholar

    [5] Eyles N. Earth's glacial record and its tectonic setting[J]. Earth-Science Reviews, 1993, 35(1/2):1-248.

    Google Scholar

    [6] Harland W B. Critical evidence for a great infra-Cambrian glaciation[J]. Geologische Rundschau, 1964, 54(1):45-61.

    Google Scholar

    [7] Cox G M, Halverson G P, Stevenson R K, et al. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth[J]. Earth and Planetary Science Letters, 2016, 446:89-99.

    Google Scholar

    [8] Klein C, Beukes N J. Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan iron-formation in Canada[J]. Economic Geology, 1993, 88(3):542-565.

    Google Scholar

    [9] Canfield D E, Poulton S W, Narbonne G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5808):92-95.

    Google Scholar

    [10] Scott C, Lyons T W, Bekker A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean[J]. Nature, 2008, 452(7186):456-459.

    Google Scholar

    [11] Chen X, Ling H F, Vance D, et al. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals[J]. Nature Communications, 2015, 6:7142-7148.

    Google Scholar

    [12] Moores E M. Southwest US-East Antarctic (SWEAT) connection:a hypothesis[J]. Geology, 1991, 19(5):425-428.

    Google Scholar

    [13] Dalziel I W D. Pacific margins of Laurentia and East AntarcticaAustralia as a conjugate rift pair:Evidence and implications for an Eocambrian supercontinent[J]. Geology, 1991, 19(6):598-601.

    Google Scholar

    [14] Hoffman P F. Did the breakout of Laurentia turn Gondwanaland inside-out[J]. Science, 1991, 252(5011):1409-1412.

    Google Scholar

    [15] Li Z X, Zhang L, Powell C M A. South China in Rodinia:part of the missing link between Australia-East Antarctica and Laurentia?[J]. Geology, 1995, 23(5):407-410.

    Google Scholar

    [16] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia:a synthesis[J]. Precambrian Research, 2008, 160(1):179-210.

    Google Scholar

    [17] Karlstrom K E, Williams M L, McLelland J, et al. Refining Rodinia:geologic evidence for the Australia-Western US connection in the Proterozoic[J]. GSA Today, 1999, 9(10):1-7.

    Google Scholar

    [18] Burrett C, Berry R. Proterozoic Australia-Western United States (AUSWUS) fit between Laurentia and Australia[J]. Geology, 2000, 28(2):103-106.

    Google Scholar

    [19] Wingate M T D, Pisarevsky S A, Evans D A D. Rodinia connections between Australia and Laurentia:no SWEAT, no AUSWUS?[J]. Terra Nova, 2002, 14(2):121-128.

    Google Scholar

    [20] Evans D A D. The palaeomagnetically viable, long-lived and allinclusive Rodinia supercontinent reconstruction[J]. Geological Society, London, Special Publications, 2009, 327(1):371-404.

    Google Scholar

    [21] Abrajevitch A, Van der Voo R. Incompatible Ediacaran paleomagnetic directions suggest an equatorial geomagnetic dipole hypothesis[J]. Earth and Planetary Science Letters, 2010, 293(1):164-170.

    Google Scholar

    [22] Schmidt P W, Williams G E, McWilliams M O. Palaeomagnetism and magnetic anisotropy of late Neoproterozoic strata, South Australia:Implications for the palaeolatitude of late Cryogenian glaciation, cap carbonate and the Ediacaran System[J]. Precambrian Research, 2009, 174(1):35-52.

    Google Scholar

    [23] Hodych J P, Buchan K L. Early Silurian palaeolatitude of the Springdale Group redbeds of central Newfoundland:a palaeomagnetic determination with a remanence anisotropy test for inclination error[J]. Geophysical Journal International, 1994, 117(3):640-652.

    Google Scholar

    [24] Tauxe L, Kent D V. A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations:was the ancient magnetic field dipolar?[J]. Timescales of the Paleomagnetic Field, 2004:101-115.

    Google Scholar

    [25] Wang B, Yang Z. Late Cretaceous paleomagnetic results from southeastern China, and their geological implication[J]. Earth and Planetary Science Letters, 2007, 258(1):315-333.

    Google Scholar

    [26] 方大钧, 谈晓冬. 等温剩磁各向异性及其在磁倾角校正中的应用[J]. 地球物理学报, 2000, 43(5):719-724.

    Google Scholar

    [27] 王恒, 仝亚博, 高亮, 等. 青藏高原东南缘川滇地块古近纪沉积地层古地磁分析及其构造意义[J]. 地质通报, 2015, 34(1):45-57.

    Google Scholar

    [28] Gilder S, Chen Y, Cogné J P, et al. Paleomagnetism of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks from the western Tarim Basin and implications for inclination shallowing and absolute dating of the M-0(ISEA?) chron[J]. Earth and Planetary Science Letters, 2003, 206(3):587-600.

    Google Scholar

    [29] Jing X, Yang Z, Tong Y, et al. A revised paleomagnetic pole from the mid-Neoproterozoic Liantuo Formation in the Yangtze block and its paleogeographic implications[J]. Precambrian Research, 2015, 268:194-211.

    Google Scholar

    [30] Lan Z, Li X H, Zhu M, et al. Revisiting the Liantuo Formation in Yangtze Block, South China:SIMS U-Pb zircon age constraints and regional and global significance[J]. Precambrian Research, 2015, 263:123-141.

    Google Scholar

    [31] Van der Voo R. The reliability of paleomagnetic data[J]. Tectonophysics, 1990, 184(1):1-9.

    Google Scholar

    [32] 安志辉, 童金南, 叶琴, 等. 峡东青林口地区新元古代地层序列及沉积演变[J]. 地球科学(中国地质大学学报), 2014, 39(7):795-806.

    Google Scholar

    [33] Liu P, Li X, Chen S, et al. New SIMS U-Pb zircon age and its constraint on the beginning of the Nantuo glaciation[J]. Science Bulletin, 2015, 60(10):958-963.

    Google Scholar

    [34] Peters K E, Cunningham A E, Walters C C, et al. Petroleum systems in the Jiangling-Dangyang area, Jianghan basin, China[J]. Organic Geochemistry, 1996, 24(10):1035-1060.

    Google Scholar

    [35] Vernhet E, Reijmer J J G. Sedimentary evolution of the Ediacaran Yangtze platform shelf (Hubei and Hunan provinces, Central China)[J]. Sedimentary Geology, 2010, 225(3):99-115.

    Google Scholar

    [36] Zhu G, Wang T, Xie Z, et al. Giant gas discovery in the Precambrian deeply buried reservoirs in the Sichuan Basin, China:implications for gas exploration in old cratonic basins[J]. Precambrian Research, 2015, 262:45-66.

    Google Scholar

    [37] Kirschvink J L. The least-squares line and plane and the analysis of palaeomagnetic data[J]. Geophysical Journal International, 1980, 62(3):699-718.

    Google Scholar

    [38] Zhang S, Evans D A D, Li H, et al. Paleomagnetism of the late Cryogenian Nantuo Formation and paleogeographic implications for the South China Block[J]. Journal of Asian Earth Sciences, 2013, 72:164-177.

    Google Scholar

    [39] Evans D A D, Li Z X, Kirschvink J L, et al. A high-quality midNeoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia[J]. Precambrian Research, 2000, 100(1):313-334.

    Google Scholar

    [40] Li Z X, Evans D A D, Halverson G P. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J]. Sedimentary Geology, 2013, 294:219-232.

    Google Scholar

    [41] Liu X, Gao S, Diwu C, et al. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies[J]. American Journal of Science, 2008, 308(4):421-468.

    Google Scholar

    [42] 马国干, 李华芹, 张自超. 华南地区震旦纪时限范围的研究[J]. 中国地质科学院宜昌地质矿产研究所所刊, 1984, 8(1):1-29.

    Google Scholar

    [43] Cui X, Zhu W B, Ge R F. Provenance and Crustal Evolution of the Northern Yangtze Block Revealed by Detrital Zircons from Neoproterozoic-Early Paleozoic Sedimentary Rocks in the Yangtze Gorges Area, South China[J]. The Journal of Geology, 2014, 122(2):217-235.

    Google Scholar

    [44] 高维, 张传恒. 长江三峡黄陵花岗岩与莲沱组凝灰岩的锆石SHRIMP U-Pb年龄及其构造地层意义[J].地质通报, 2009, 28:45-50.

    Google Scholar

    [45] Hofmann M, Linnemann U, Rai V, et al. The India and South China cratons at the margin of Rodinia-Synchronous Neoproterozoic magmatism revealed by LA-ICP-MS zircon analyses[J]. Lithos, 2011, 123(1):176-187.

    Google Scholar

    [46] Yang Z, Sun Z, Yang T, et al. A long connection (750-380Ma) between South China and Australia:paleomagnetic constraints[J]. Earth and Planetary Science Letters, 2004, 220(3):423-434.

    Google Scholar

    [47] Wingate M T D, Giddings J W. Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia:implications for an Australia-Laurentia connection at 755Ma[J]. Precambrian Research, 2000, 100(1):335-357.

    Google Scholar

    [48] Sohl L E, Christie-Blick N, Kent D V. Paleomagnetic polarity reversals in Marinoan (ca. 600Ma) glacial deposits of Australia:implications for the duration of low-latitude glaciation in Neoproterozoic time[J]. Geological Society of America Bulletin, 1999, 111(8):1120-1139.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1053) PDF downloads(79) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint