[1] |
Cawood P A, Hawkesworth C J. Earth's middle age[J]. Geology, 2014, 42(6):503-506.
Google Scholar
|
[2] |
Kirschvink J L. Late Proterozoic low-latitude global glaciation:the snowball Earth[C]//The Proterozoic biosphere:a multidisciplinary study. Cambridge University Press, New York, 1992:51-52.
Google Scholar
|
[3] |
Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball earth[J]. Science, 1998, 281(5381):1342-1346.
Google Scholar
|
[4] |
Hyde W T, Crowley T J, Baum S K, et al. Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model[J]. Nature, 2000, 405(6785):425-429.
Google Scholar
|
[5] |
Eyles N. Earth's glacial record and its tectonic setting[J]. Earth-Science Reviews, 1993, 35(1/2):1-248.
Google Scholar
|
[6] |
Harland W B. Critical evidence for a great infra-Cambrian glaciation[J]. Geologische Rundschau, 1964, 54(1):45-61.
Google Scholar
|
[7] |
Cox G M, Halverson G P, Stevenson R K, et al. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth[J]. Earth and Planetary Science Letters, 2016, 446:89-99.
Google Scholar
|
[8] |
Klein C, Beukes N J. Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan iron-formation in Canada[J]. Economic Geology, 1993, 88(3):542-565.
Google Scholar
|
[9] |
Canfield D E, Poulton S W, Narbonne G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5808):92-95.
Google Scholar
|
[10] |
Scott C, Lyons T W, Bekker A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean[J]. Nature, 2008, 452(7186):456-459.
Google Scholar
|
[11] |
Chen X, Ling H F, Vance D, et al. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals[J]. Nature Communications, 2015, 6:7142-7148.
Google Scholar
|
[12] |
Moores E M. Southwest US-East Antarctic (SWEAT) connection:a hypothesis[J]. Geology, 1991, 19(5):425-428.
Google Scholar
|
[13] |
Dalziel I W D. Pacific margins of Laurentia and East AntarcticaAustralia as a conjugate rift pair:Evidence and implications for an Eocambrian supercontinent[J]. Geology, 1991, 19(6):598-601.
Google Scholar
|
[14] |
Hoffman P F. Did the breakout of Laurentia turn Gondwanaland inside-out[J]. Science, 1991, 252(5011):1409-1412.
Google Scholar
|
[15] |
Li Z X, Zhang L, Powell C M A. South China in Rodinia:part of the missing link between Australia-East Antarctica and Laurentia?[J]. Geology, 1995, 23(5):407-410.
Google Scholar
|
[16] |
Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia:a synthesis[J]. Precambrian Research, 2008, 160(1):179-210.
Google Scholar
|
[17] |
Karlstrom K E, Williams M L, McLelland J, et al. Refining Rodinia:geologic evidence for the Australia-Western US connection in the Proterozoic[J]. GSA Today, 1999, 9(10):1-7.
Google Scholar
|
[18] |
Burrett C, Berry R. Proterozoic Australia-Western United States (AUSWUS) fit between Laurentia and Australia[J]. Geology, 2000, 28(2):103-106.
Google Scholar
|
[19] |
Wingate M T D, Pisarevsky S A, Evans D A D. Rodinia connections between Australia and Laurentia:no SWEAT, no AUSWUS?[J]. Terra Nova, 2002, 14(2):121-128.
Google Scholar
|
[20] |
Evans D A D. The palaeomagnetically viable, long-lived and allinclusive Rodinia supercontinent reconstruction[J]. Geological Society, London, Special Publications, 2009, 327(1):371-404.
Google Scholar
|
[21] |
Abrajevitch A, Van der Voo R. Incompatible Ediacaran paleomagnetic directions suggest an equatorial geomagnetic dipole hypothesis[J]. Earth and Planetary Science Letters, 2010, 293(1):164-170.
Google Scholar
|
[22] |
Schmidt P W, Williams G E, McWilliams M O. Palaeomagnetism and magnetic anisotropy of late Neoproterozoic strata, South Australia:Implications for the palaeolatitude of late Cryogenian glaciation, cap carbonate and the Ediacaran System[J]. Precambrian Research, 2009, 174(1):35-52.
Google Scholar
|
[23] |
Hodych J P, Buchan K L. Early Silurian palaeolatitude of the Springdale Group redbeds of central Newfoundland:a palaeomagnetic determination with a remanence anisotropy test for inclination error[J]. Geophysical Journal International, 1994, 117(3):640-652.
Google Scholar
|
[24] |
Tauxe L, Kent D V. A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations:was the ancient magnetic field dipolar?[J]. Timescales of the Paleomagnetic Field, 2004:101-115.
Google Scholar
|
[25] |
Wang B, Yang Z. Late Cretaceous paleomagnetic results from southeastern China, and their geological implication[J]. Earth and Planetary Science Letters, 2007, 258(1):315-333.
Google Scholar
|
[26] |
方大钧, 谈晓冬. 等温剩磁各向异性及其在磁倾角校正中的应用[J]. 地球物理学报, 2000, 43(5):719-724.
Google Scholar
|
[27] |
王恒, 仝亚博, 高亮, 等. 青藏高原东南缘川滇地块古近纪沉积地层古地磁分析及其构造意义[J]. 地质通报, 2015, 34(1):45-57.
Google Scholar
|
[28] |
Gilder S, Chen Y, Cogné J P, et al. Paleomagnetism of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks from the western Tarim Basin and implications for inclination shallowing and absolute dating of the M-0(ISEA?) chron[J]. Earth and Planetary Science Letters, 2003, 206(3):587-600.
Google Scholar
|
[29] |
Jing X, Yang Z, Tong Y, et al. A revised paleomagnetic pole from the mid-Neoproterozoic Liantuo Formation in the Yangtze block and its paleogeographic implications[J]. Precambrian Research, 2015, 268:194-211.
Google Scholar
|
[30] |
Lan Z, Li X H, Zhu M, et al. Revisiting the Liantuo Formation in Yangtze Block, South China:SIMS U-Pb zircon age constraints and regional and global significance[J]. Precambrian Research, 2015, 263:123-141.
Google Scholar
|
[31] |
Van der Voo R. The reliability of paleomagnetic data[J]. Tectonophysics, 1990, 184(1):1-9.
Google Scholar
|
[32] |
安志辉, 童金南, 叶琴, 等. 峡东青林口地区新元古代地层序列及沉积演变[J]. 地球科学(中国地质大学学报), 2014, 39(7):795-806.
Google Scholar
|
[33] |
Liu P, Li X, Chen S, et al. New SIMS U-Pb zircon age and its constraint on the beginning of the Nantuo glaciation[J]. Science Bulletin, 2015, 60(10):958-963.
Google Scholar
|
[34] |
Peters K E, Cunningham A E, Walters C C, et al. Petroleum systems in the Jiangling-Dangyang area, Jianghan basin, China[J]. Organic Geochemistry, 1996, 24(10):1035-1060.
Google Scholar
|
[35] |
Vernhet E, Reijmer J J G. Sedimentary evolution of the Ediacaran Yangtze platform shelf (Hubei and Hunan provinces, Central China)[J]. Sedimentary Geology, 2010, 225(3):99-115.
Google Scholar
|
[36] |
Zhu G, Wang T, Xie Z, et al. Giant gas discovery in the Precambrian deeply buried reservoirs in the Sichuan Basin, China:implications for gas exploration in old cratonic basins[J]. Precambrian Research, 2015, 262:45-66.
Google Scholar
|
[37] |
Kirschvink J L. The least-squares line and plane and the analysis of palaeomagnetic data[J]. Geophysical Journal International, 1980, 62(3):699-718.
Google Scholar
|
[38] |
Zhang S, Evans D A D, Li H, et al. Paleomagnetism of the late Cryogenian Nantuo Formation and paleogeographic implications for the South China Block[J]. Journal of Asian Earth Sciences, 2013, 72:164-177.
Google Scholar
|
[39] |
Evans D A D, Li Z X, Kirschvink J L, et al. A high-quality midNeoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia[J]. Precambrian Research, 2000, 100(1):313-334.
Google Scholar
|
[40] |
Li Z X, Evans D A D, Halverson G P. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J]. Sedimentary Geology, 2013, 294:219-232.
Google Scholar
|
[41] |
Liu X, Gao S, Diwu C, et al. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies[J]. American Journal of Science, 2008, 308(4):421-468.
Google Scholar
|
[42] |
马国干, 李华芹, 张自超. 华南地区震旦纪时限范围的研究[J]. 中国地质科学院宜昌地质矿产研究所所刊, 1984, 8(1):1-29.
Google Scholar
|
[43] |
Cui X, Zhu W B, Ge R F. Provenance and Crustal Evolution of the Northern Yangtze Block Revealed by Detrital Zircons from Neoproterozoic-Early Paleozoic Sedimentary Rocks in the Yangtze Gorges Area, South China[J]. The Journal of Geology, 2014, 122(2):217-235.
Google Scholar
|
[44] |
高维, 张传恒. 长江三峡黄陵花岗岩与莲沱组凝灰岩的锆石SHRIMP U-Pb年龄及其构造地层意义[J].地质通报, 2009, 28:45-50.
Google Scholar
|
[45] |
Hofmann M, Linnemann U, Rai V, et al. The India and South China cratons at the margin of Rodinia-Synchronous Neoproterozoic magmatism revealed by LA-ICP-MS zircon analyses[J]. Lithos, 2011, 123(1):176-187.
Google Scholar
|
[46] |
Yang Z, Sun Z, Yang T, et al. A long connection (750-380Ma) between South China and Australia:paleomagnetic constraints[J]. Earth and Planetary Science Letters, 2004, 220(3):423-434.
Google Scholar
|
[47] |
Wingate M T D, Giddings J W. Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia:implications for an Australia-Laurentia connection at 755Ma[J]. Precambrian Research, 2000, 100(1):335-357.
Google Scholar
|
[48] |
Sohl L E, Christie-Blick N, Kent D V. Paleomagnetic polarity reversals in Marinoan (ca. 600Ma) glacial deposits of Australia:implications for the duration of low-latitude glaciation in Neoproterozoic time[J]. Geological Society of America Bulletin, 1999, 111(8):1120-1139.
Google Scholar
|