2016 Vol. 35, No. 11
Article Contents

LI Qiang, WEN Zhenhe, HOU Fanghui, ZHU Xiaoqing, SUN Jun. The genesis of Yangkou serpentinites in the Sulu ultra-high-pressure terrane: Evidence from mineral chemistry, geochemistry and geochronology[J]. Geological Bulletin of China, 2016, 35(11): 1784-1796.
Citation: LI Qiang, WEN Zhenhe, HOU Fanghui, ZHU Xiaoqing, SUN Jun. The genesis of Yangkou serpentinites in the Sulu ultra-high-pressure terrane: Evidence from mineral chemistry, geochemistry and geochronology[J]. Geological Bulletin of China, 2016, 35(11): 1784-1796.

The genesis of Yangkou serpentinites in the Sulu ultra-high-pressure terrane: Evidence from mineral chemistry, geochemistry and geochronology

  • Serpentinites from Yangkou area in the Sulu ultra-high-pressure terrane were analyzed in the aspects of mineral chemistry, whole-rock major and trace elements and platinum-group elements. Zircon geochronologic data of these serpentinites were also investigated with the purpose of better constraining the petrogenesis and the tectonic environment in which serpentinites were formed. The spinels in the examined serpentinites have undergone multi-stage metamorphism. The serpentinites contain highly incompatible trace elements, and have low Ir values (0.64×10-9~1.43×10-9) as well as high Pd/Ir ratios (1.05~3.42). Whole-rock major elements show features of ultramafic cumulate, with CaO+Al2O3 varying from 2.0% to 5.83%. The serpentinite zircons belong to two groups. The first group represents newly formed metamorphic zircon (average 230±3Ma), whose age coincides with the age of HPUHP metamorphism; the other group contains fuzzy residual magmatic zoning cores, which may have formed through recrystallization of older zircons during Mesozoic metamorphism. The authors hold that the serpentinite protoliths were cumulates, which were subducted and metamorphosed during the subduction of the Yangtze Craton in the Triassic period. The examined serpentinites have undergone melt-rock interactions and fluid enrichment prior to serpentinization.
  • 加载中
  • [1] Zhang R Y, Liou J G, Yang J S, et al. Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China[J]. Journal of Metamorphic Geology, 2000, 18:149-166.

    Google Scholar

    [2] Zhang R Y, Liou J G, Ernst W G. The Dabie-Sulu continental col-lision zone:a comprehensive review[J]. Gondwana Research, 2009, 16:1-26.

    Google Scholar

    [3] 郑建平. 不同时空背景幔源物质对比与华北深部岩石圈破坏和增生置换过程[J]. 科学通报,2009,54:1990-2007.

    Google Scholar

    [4] 王希斌,杨经绥,李天福,等.东海地区高压超高压变质带中变质橄榄岩及其原岩和成因类型的判别——以PP1孔和PP3孔为例[J]. 地质学报,2009,83(7):946-963.

    Google Scholar

    [5] Xu Z Q, Yang W C, Ji S C, et al. Deep root of a continent-continent collision belt:Evidence from the Chinese Continental Scientic Drilling (CCSD) deep borehole in the Sulu ultrahigh-pressure (HPUHP) metamorphic terrane, China[J]. Tectonophysics, 2009, 475:204-219.

    Google Scholar

    [6] Yang J S, Li T F, Chen S Z, et al. Genesis of garnet peridotites in the Sulu UHP belt:Examples from the Chinese continental scientific drilling project-main hole, PP1 and PP3 drill holes[J]. Tectonophysics, 2009,475:359-382.

    Google Scholar

    [7] 陈世忠, 杨经绥.苏鲁超高压变质带岗上超镁铁质岩铬尖晶石形成过程-铬成矿新机制[J].地学前缘,2009,16(5):232-244.

    Google Scholar

    [8] 陈世忠,杨经绥,许志琴,等. 大陆科学钻探CCSD-PP3钻孔超镁铁岩岩石学和矿物学特征及其意义[J]. 岩石学报,2005, 21(2):369-380.

    Google Scholar

    [9] 陈世忠,杨经绥,张仲明.中国大陆科学钻探CCSD-PP3钻孔地幔岩的尖晶石相部分熔融证据[J].岩石学报,2006,22(11):2815-2824.

    Google Scholar

    [10] 李天福,杨经绥,Rumble D. 苏鲁超高压变质带的岩浆型超镁铁岩:来自中国大陆科学钻探主孔的亏损氧同位素证据[J]. 岩石学报,2006,22(7):1933-1940.

    Google Scholar

    [11] 李天福,杨经绥,张儒媛. 亏损上地幔中的富钾熔体和碳酸盐交代作用:来自CCSD预先导孔橄榄岩的地球化学证据[J]. 地球科学(中国地质大学学报),2006,31(4):457-474.

    Google Scholar

    [12] 任玉峰,高翔,杨经绥,等. 山东荣成马草夼橄榄岩矿物地球化学研究[J].岩石矿物学杂志, 2009,28(3):215-224.

    Google Scholar

    [13] 任玉峰,杨经绥,张仲明,等.中国大陆科学钻探工程卫星孔CCSDPP6钻孔橄榄岩岩石学研究[J].地质学报,2007,81(7):1004-1016.

    Google Scholar

    [14] 宋衍茹,金淑燕,叶凯.苏鲁-大别山超高压变质带迟家店和碧溪岭石榴二辉橄榄岩橄榄石组构[J].岩石学报,2007,23(5):1153-1159.

    Google Scholar

    [15] 宋衍茹,叶凯,续海金.洋壳俯冲过程中的地慢楔上升对流:来自芝麻坊石榴子石二辉橄榄岩早期变质的证据[J].岩石学报, 2009,25(1):147-158.

    Google Scholar

    [16] 许志琴,陈晶,王勤,等. 南苏鲁芝麻房石榴石橄榄岩中橄榄石的"C"类组构及其形成条件探讨[J].岩石学报, 2005,21(2):389-397.

    Google Scholar

    [17] 许志琴,梁凤华,杨经绥,等.再论"大陆深俯冲和折返动力学":来自中国大陆科学群钻及苏鲁超高压变质带的制约[J].岩石学报, 2009,25(7):1561-1574.

    Google Scholar

    [18] 杨经绥,李天福,梁凤华,等. 中国大陆科学钻探主孔(CCSD-MH)石榴石橄榄岩:一个经历了深俯冲作用的古生代超镁铁质侵入体[J].岩石学报,2007,23(12):3153-3170.

    Google Scholar

    [19] 李敏,韩宗珠,许红,等.青岛仰口榴辉岩及其围岩的岩石地球化学特征和成因机制[J].中国海洋大学学报, 2014, 44(3):71-82.

    Google Scholar

    [20] Ye K, Cong B L, Ye D N. The possible subduction of continental material to depths greater than 200km[J]. Nature, 2000, 407:734-736.

    Google Scholar

    [21] Zhang R Y, Yang J S, Wooden J L, et al. U-Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China:implications for mantle metasomatism and subductionzone UHP metamorphism[J]. Earth and Planetary Science Letters, 2005, 237:729-743.

    Google Scholar

    [22] 王来明,宋明春,王沛成. 胶南-威海造山带研究进展及重要地质问题讨论[J].山东地质, 2002, 18(3/4):78-83.

    Google Scholar

    [23] 谢志鹏,王建,Keiko H. 苏鲁超高压变质带中蛇纹岩成因:矿物化学和铂族元素证据[J].吉林大学学报(地球科学版), 2012, 42(3):119-131.

    Google Scholar

    [24] 许志琴,杨经绥,李化启,等. 中国大陆印支碰撞造山系及其造山机制[J].岩石学报, 2012,28(6):1697-1709.

    Google Scholar

    [25] Zheng J P, Sun M, Griffin W L, et al. Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China:petrogenetic and geodynamic implications[J]. Chemical Geology, 2008, 247:282-304.

    Google Scholar

    [26] 刘福来,施建荣,刘建辉,等.北苏鲁威海地区超基性岩的原岩形成时代和超高压变质时代[J].岩石学报, 2011, 27(4):1075-1084.

    Google Scholar

    [27] 潘明宝,张庆龙,陈火根,等. 苏鲁造山带南缘岩石-地层格架[J].地质通报, 2002, 21(12):848-854.

    Google Scholar

    [28] Xie Z P, Hattori k, Wang J. Origins of ultramafic rocks in the Sulu Ultrahigh-pressure Terrane, Eastern China[J]. Lithos, 2013, 178:158-170.

    Google Scholar

    [29] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotiteinteractions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51:537-571.

    Google Scholar

    [30] Ludwig K R. Isoplot/Ex version 3. 00:A Geochronology Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003, 4:1-70.

    Google Scholar

    [31] Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 2000, 51:507-513.

    Google Scholar

    [32] Potts P J, Kane J S. International association of geoanalysts certificate of analysis:certified reference material OU-6(Penrhyn slate)[J]. Geostandards and Geoanalytical Research, 2005, 29:233-236.

    Google Scholar

    [33] Thompson M, Potts P J, Kane J S, et al. GeoPT5. An international proficiency test for analytical geochemistry laboratories-report on round 5(August 1999)[J]. Geostandards and Geoanalytical Research, 2000, 24:1-28.

    Google Scholar

    [34] Qi L, Gao J F, Huang X W, et al. An improved digestion technique for determination of platinum group elements in geological samples[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(9):1900-1904.

    Google Scholar

    [35] Meisel T, Moser J. Reference materials for geochemical PGE analysis:New analytical data for Ru, Rh, Pd, Os, Ir, Pt and Re by isotope dilution ICP-MS in 11 geological reference materials[J]. Chemical Geology, 2004, 208:319-338.

    Google Scholar

    [36] Wang J, Hattori K H, Kilian R, et al.Metasomatism of sub-arc mantle peridotites below southern South America:reduction of fO2 by slab-melt[J]. Contributions to Mineralogy and Petrology,2007, 153:607-624.

    Google Scholar

    [37] Roeder P L, Campbell I H. The effect of post-cumulus reactions on composition of chrome-spinels from the Jimberlana intrusion[J]. Journal of Petrology, 1985, 26(3):763-786.

    Google Scholar

    [38] Press S. Detrital spinels from alpinotype source rocks in Middle Devonian sediments of the Rhenish massif[J]. Geologische Rundschau, 1986, 75:333-340.

    Google Scholar

    [39] Cookenboo H O, Bustin R M, Wilks K R. Detrital chromium spinel compositions used to reconstruct the tectonic setting of provenance:Implications for orogeny in the Canadian Cordilera[J]. Journal of Sedimentary Research, 1997, 67:116-123.

    Google Scholar

    [40] Arai S. Characterization of spinel peridotites by olivine spinel compositional relationships:Review and interpretation[J]. Chemical Geology, 1994, 113:191-204.

    Google Scholar

    [41] Pearce J A, Barker P F, Edwards S J, et al. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic[J]. Contributions to Mineralogy and Petrology, 2000, 139:36-53.

    Google Scholar

    [42] Dick H J B, Bullen T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas[J]. Contributions to Mineralogy and Petrology, 1984, 86:54-76.

    Google Scholar

    [43] Barnes S J, Roeder P L. The range of spinel compositions in terrestrial mafic and ultramafic rocks[J]. Journal of Petrology, 2001, 42:2279-2302.

    Google Scholar

    [44] Saumur B M, Hattori K, Guillot S. Contrasting origins of serpentinites in a subduction complex, northern Dominican Republic[J]. Bulletin of the Geological Society of America, 2010, 122(1/2):292-304.

    Google Scholar

    [45] Zheng J P, O'Reilly S Y, Griffin W L, et al. Relics of refractory mantle beneath the eastern North China block:significance for lithosphere evolution[J]. Lithos,2001, 57:43-66.

    Google Scholar

    [46] Zheng J P, Griffin W L, O'Reilly S Y, et al. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere:constraints on mantle evolution beneath Eastern China[J]. Journal of Petrology,2006, 47:2233-2256.

    Google Scholar

    [47] McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120:223-254.

    Google Scholar

    [48] Parkinson I J, Pearce J A. Peridotites from the Izu-BoninMarianaforearc(ODP Leg 125):Evidence for mantle melting and meltmantle interaction in a supra-subduction zone setting[J]. Journal of Petrology, 1998, 39:1577-1618.

    Google Scholar

    [49] Coleman R G.Ophiolites[M]. Berlin, Heidelberg, New York, Evans:Spring-Verlag Press, 1977.

    Google Scholar

    [50] Zheng L, Zhi X C, Reisberg L. Re-Os systematics of the Raobazhaiperidotite massifs from the Dabieorogenic zone, eastern China[J]. Chemical Geology, 2009, 268:1-14.

    Google Scholar

    [51] Niu Y. Bulk-rock major and trace element compositions of abyssal peridotites:Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges[J]. Journal of Petrology, 2004, 45:2423-2458.

    Google Scholar

    [52] Paulick H, Bach W, Godard M, et al. Geochemistry of abssalperidotites(Mid-AtlanticRidge, 15° 20'N, ODP Leg 209):Implications for fluid/rock interaction in slow spreading environments[J]. Chemical Geology, 2006, 234:179-210.

    Google Scholar

    [53] 李源,杨经绥,刘钊,等.西藏雅鲁藏布江缝合带西段巴尔地幔橄榄岩成因及构造意义[J].岩石学报,2011,27(11):3239-3254.

    Google Scholar

    [54] Xu X Z, Yang J S, Ba D Z, et al. Petrogenesis of the Kangjinlaperidotite in the Luobusaophiolite, Southern Tibet[J]. Journal of Asian Earth Sciences, 2011, 42(4):553-568.

    Google Scholar

    [55] Godard M, Lagabrielle Y, Alard O, et al. Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274(FifteenTwenty Fracture Zone, Mid-Atlantic Ridge):implications for mantle dynamics beneath a slow spreading ridge[J]. Earth Planetary Science Letter,2008, 267:410-425.

    Google Scholar

    [56] 李晖,刘庆,侯泉林,等.内蒙古柯单山蛇绿岩地幔橄榄岩铂族元素(PGEs)的分布特征及分异机制探讨[J].岩石学报,2011,27(6):1759-1769.

    Google Scholar

    [57] Capobianco C J, Drake M J. Partioning of ruthenium, rhodium, palladium between spinel and silicate melt and implications for platinum group element fractionation trends[J]. Geochimca et Cosmochimica Acta, 1990, 54:869-874.

    Google Scholar

    [58] Liu F L, Liou J G. Zircon as the best mineral for P-T-time history of UHP metamorphism:A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks[J]. Journal of Asian Earth Sciences, 2011, 40:1-39.

    Google Scholar

    [59] Rowley D B, Xue F, Tucker R D. Ages of ultrahigh pressure metamorphism and protolithorthogneisses from the eastern Dabie Shan:U/Ph zircon geochronology[J]. Earth and Planet Science Letters, 1997, 151:191-203.

    Google Scholar

    [60] Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibole to granulite facies zircon:Geochronology of the Ivren Zone(Southern Alps)[J]. Contrib. Mineral. Petrol., 1999, 134:380-404.

    Google Scholar

    [61] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004, 49(16):1589-1604.

    Google Scholar

    [62] Deschamps F, Godard M, Guillot S, et al. Geochemistry of subduction zone serpentinites:A review[J]. Lithos, 2013, 178:96-127.

    Google Scholar

    [63] Kodolányi J, Pettke T, Spandler C, et al. Geochemistry of ocean floor and fore-arc serpentinites:constraints on the ultramafic input to subduction zones[J]. Journal of Petrology, 2012, 53:235-270.

    Google Scholar

    [64] Wang J, Hattori K H, Li J P, et al. Oxidation state of Paleozoic subcontinental lithospheric mantle below the PaliAike[J]. Lithos, 2008, 105:98-110.

    Google Scholar

    [65] Wang J, Hattori K, Xu W L, et al. Origin of ultramafic xenoliths in high-Mg diorites from east-central China based on their oxidation state and abundance of platinum group elements[J]. International Geology Review, 2012, 54:1203-1218.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1382) PDF downloads(109) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint