Citation: | LI Zhuang, GAO Yang, HE Kai, GAO Haoyuan, WEI Tongyao, LIU Zheng, ZHAO Zhinan. 2020. Analysis of the fluidization process of the high-position and long-runout landslide in Shuicheng, Liupanshui, Guizhou Province. Journal of Geomechanics, 26(4): 520-532. doi: 10.12090/j.issn.1006-6616.2020.26.04.045 |
High-position and long-runout landslide is a kind of common geological disaster in the southwestern mountainous area of China. It always exists with impact disintegration effect,then converts to avalanche debris or debris flow with the characteristics of fluidization movement and accumulation. The Jichang landslide,occurred in Shuicheng County,Liupanshui City,Guizhou Province,China on July 23,2019, is a typical high-position and long-runout fluidized landslide. The position difference between toe and crown is 430 m,the horizontal movement distance is 1340 m,and the volume of accumulation body is 200×104 m3,which caused 21 houses being buried and 51 people being killed. Based on the detailed field investigation and the comparison of the topography before and after the landslide,the whole process of the movement and accumulation of the landslide is simulated and analyzed by using DAN-W. (1) The maximum thickness of the accumulation body in the source area and accumulation area of the Shuicheng landslide is 27 m and 15 m respectively,the maximum velocity is 27 m/s in the front of debris flow,and the maximum kinetic energy is 6.57×106 J. (2) Due to the conversion of potential energy into kinetic energy,the landslide quickly reaches the peak velocity and scrapes the loose soil layer on the surface. (3) Due to heavy rainfall,the main body moves at high speed so that the pore water of the basement can't be discharged in time,which leads to the decrease of the friction of the basement and reduces the energy loss; Disintegration of the main body promotes fluidization of particles,then reduces friction,which is also an important reason for the long-runout movement of landslide.
BUSS E, HEIM A, 1881. Der Bergsturz von Elm[J]. Zurich, Wurster & Cie, 163. |
DAVIES T R, MCSAVENEY M J, HODGSON K A, 1999. A fragmentation-spreading model for long-runout rock avalanches[J]. Canadian Geotechnical Journal, 36(6):1096-1110. doi: 10.1139/t99-067 |
EVANS S G, HUNGR O, CLAGUE J J, 2001. Dynamics of the 1984 rock avalanche and associated distal debris flow on Mount Cayley, British Columbia, Canada; implications for landslide hazard assessment on dissected volcanoes[J]. Engineering Geology, 61(1):29-51. doi: 10.1016/S0013-7952(00)00118-6 |
FAN X M, XU Q, SCARINGI G, et al., 2019. The "long" runout rock avalanche in Pusa, China, on August 28, 2017:a preliminary report[J]. Landslides, 16(1):139-154. doi: 10.1007/s10346-018-1084-z |
FENG Z, YIN Y P, LI B, et al., 2012. Mechanism analysis of apparent dip landslide of Jiweishan in Wulong, Chongqing[J]. Rock and Soil Mechanics, 33(9):2704-2712. (in Chinese with English abstract) |
GAO Y, HE K, LI Z, et al., 2020. Analysis on disaster types and dynamics of landslide in southwest karstmountain area[J]. Hydrogeology & Engineering Geology(4):1-11. (in Chinese with English abstract) |
GAO Y, LI B, FENG Z, et al., 2017. Global climate change and geological disaster response analysis[J]. Journal of Geomechanics, 23(1):65-77. (in Chinese with English abstract) |
GAO Y, LI B, GAO H Y, et al., 2020. Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area:a case study of the Shuicheng "7·23" landslide in Guizhou, China[J]. Landslides, 17(7):1663-1677. doi: 10.1007/s10346-020-01377-8 |
GAO Y, WEI T Y, LI B, et al., 2019. Dynamics process simulation of long run-out catastrophic landfill flowslide on December 20th, 2015 in Shenzhen, China[J]. Hydrogeology and Engineering Geology, 46(1):129-138, 147. (in Chinese with English abstract) |
GAO Y, YIN Y P, LI B, et al., 2017. Investigation and dynamic analysis of the long runout catastrophic landslide at the Shenzhen landfill on December 20, 2015, in Guangdong, China[J]. Environmental Earth Sciences, 76(1):13. doi: 10.1007/s12665-016-6332-8 |
GAO Y, YIN Y P, LI B, et al., 2019. Post-failure behavior analysis of the Shenzhen "12·20" CDW landfill landslide[J]. Waste Management, 83:171-183. doi: 10.1016/j.wasman.2018.11.015 |
GAO Y, YIN Y P, XING A G, et al., 2013. Jiweishan rapid and long run-out landslide-debris flow dynamic characteristics analysis[J]. The Chinese Journal of Geological Hazard and Control, 24(4):46-51. (in Chinese with English abstract) |
HU X B, FAN X Y, TANG J J, 2019. Accumulation characteristics and energy conversion of high-speed and long-distance landslide on the basis of DEM:a case study of Sanxicun landslide[J]. Journal of Geomechanics, 25(4):527-535. (in Chinese with English abstract) |
HUNGR O, 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches[J]. Canadian Geotechnical Journal, 32(4):610-623. doi: 10.1139/t95-063 |
HUNGR O, EVANS S G, 1996. Rock avalanche run out prediction using a dynamic model[C]//Proceedings of the 7th International Symposium on Landslides. Trondheim: 233-238. |
HUNGR O, EVANS S G, 2004. Entrainment of debris in rock avalanches:an analysis of a long run-out mechanism[J]. GSA Bulletin, 116(9-10):1240-1252. |
HUNGR O, MCDOUGALL S, 2009. Two numerical models for landslide dynamic analysis[J]. Computers & Geosciences, 35(5):978-992. |
HUNGR O, MCDOUGALL S, BOVIS M, 2005. Entrainment of material by debris flows[M]//JAKOB M, HUNGR O. Debris-flow hazards and related phenomena. Berlin Heidelberg: Springer: 135-158. |
KENT P E, 1966. The Transport Mechanism in Catastrophic Rock Falls[J]. The Journal of Geology, 74(1):79-83. |
MCDOUGALL S, 2006. A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain[D]. Vancouver: University of British Columbia. |
QIN Y, LIU C, ZHANG X Y, et al., 2018. Discrete element simulation of sand confined compression test based on MatDEM[J]. Journal of Geomechanics, 24(5):676-681. (in Chinese with English abstract) |
SASSA K, 1988. Geotechnical model for the motion of landslides[C]//Proceedings of the 5th International Symposium on landslides. Rotterdam: A.A. Balkema: 37-56. |
SOSIO R, CROSTA G B, HUNGR O, 2008. Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps)[J]. Engineering Geology, 100(1-2):11-26. doi: 10.1016/j.enggeo.2008.02.012 |
WANG Y H, GU S L, ZHAO J, 2017. Study on numerical simulation of process of landslide accumulation landslide dam based on DEM[J]. Structural Engineers, 33(4):105-110. (in Chinese with English abstract) |
XING A G, WANG G H, YIN Y P, et al., 2016. Investigation and dynamic analysis of a catastrophic rock avalanche on September 23, 1991, Zhaotong, China[J]. Landslides, 13(5):1035-1047. doi: 10.1007/s10346-015-0617-y |
XING A G, YUAN X Y, XU Q, et al., 2017. Characteristics and numerical runout modelling of a catastrophic rock avalanche triggered by the Wenchuan earthquake in the Wenjia valley, Mianzhu, Sichuan, China[J]. Landslides, 14(1):83-98. doi: 10.1007/s10346-016-0707-5 |
XU Z M, HUANG R Q, TANG Z G, 2007. Engineering geological characteristics of the Touzhai landslide and its occurrence mechanisms[J]. Geological Review, 53(5):691-698. (in Chinese with English abstract) |
YANG L W, WEI Y J, WANG W P, et al., 2018. Research on dynamic characteristics of the Kalayagaqi landslide in Yining country, Xinjiang[J]. Journal of Geomechanics, 24(5):699-705. (in Chinese with English abstract) |
YANG S H, LI Z H, 2018. A numerical calculation approach based on FEM for long-term deformation of lithosphere[J]. Journal of Geomechanics, 24(6):768-775. (in Chinese with English abstract) |
YIN Y P, 2010. Mechanism of apparent dip slide of inclined bedding rockslide-a case study of Jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 29(2):217-226. (in Chinese with English abstract) |
YIN Y P, CHENG Y L, LIANG J T, et al., 2016. Heavy-rainfall-induced catastrophic rockslide-debris flow at Sanxicun, Dujiangyan, after the Wenchuan Ms 8.0 earthquake[J]. Landslides, 13(1):9-23. doi: 10.1007/s10346-015-0554-9 |
YIN Y P, LIU C Z, CHEN H Q, et al., 2013. Investigation on catastrophic landslide of January 11, 2013 at Zhaojiagou, Zhenxiong County, Yunnan Province[J]. Journal of Engineering Geology, 21(1):6-15. (in Chinese with English abstract) |
YIN Y P, WANG W P, ZHANG N, et al., 2017. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area:a case study of the Xinmo landslide in Maoxian County, Sichuan Province[J]. Geology in China, 44(5):827-841. (in Chinese with English abstract) |
ZHOU Q, XU Q, ZHOU S, et al., 2019. Movement process of abrupt loess flowslide based on numerical simulation-a case study of Chenjia 8# on the Heifangtai terrace[J]. Mountain Research, 37(4):528-537. (in Chinese with English abstract) |
冯振, 殷跃平, 李滨, 等, 2012.重庆武隆鸡尾山滑坡视向滑动机制分析[J].岩土力学, 33(9):2704-2712. |
高杨, 殷跃平, 邢爱国, 等, 2013.鸡尾山高速远程滑坡-碎屑流动力学特征分析[J].中国地质灾害与防治学报, 24(4):46-51. |
高杨, 李滨, 冯振, 等, 2017.全球气候变化与地质灾害响应分析[J].地质力学学报, 23(1):65-77. |
高杨, 卫童瑶, 李滨, 等, 2019.深圳"12·20"渣土场远程流化滑坡动力过程分析[J].水文地质工程地质, 46(1):129-138, 147. |
高杨, 贺凯, 李壮, 等, 2020.西南岩溶山区特大滑坡成灾类型及动力学分析[J].水文地质工程地质(4):1-11. |
胡晓波, 樊晓一, 唐俊杰, 2019.基于离散元的高速远程滑坡运动堆积特征及能量转化研究:以三溪村滑坡为例[J].地质力学学报, 25(4):527-535. |
秦岩, 刘春, 张晓宇, 等, 2018.基于MatDEM的砂土侧限压缩试验离散元模拟研究[J].地质力学学报, 24(5):676-681. |
胡晓波, 樊晓一, 唐俊杰, 2019.基于离散元的高速远程滑坡运动堆积特征及能量转化研究:以三溪村滑坡为例[J].地质力学学报, 25(4):527-535. |
王洋海, 顾声龙, 赵杰, 2017.基于DEM的滑坡堆积堰塞湖过程数值研究[J].结构工程师, 33(4):105-110. |
徐则民, 黄润秋, 唐正光, 2007.头寨滑坡的工程地质特征及其发生机制[J].地质论评, 53(5):691-698. |
杨龙伟, 魏云杰, 王文沛, 等, 2018.新疆伊宁县喀拉亚尕奇滑坡动力学特征研究[J].地质力学学报, 24(5):699-705. |
杨少华, 李忠海, 2018.一种基于有限元的岩石圈长期变形数值计算方法[J].地质力学学报, 24(6):768-775. |
殷跃平, 2010.斜倾厚层山体滑坡视向滑动机制研究:以重庆武隆鸡尾山滑坡为例[J].岩石力学与工程学报, 29(2):217-226. |
殷跃平, 刘传正, 陈红旗, 等, 2013. 2013年1月11日云南镇雄赵家沟特大滑坡灾害研究[J].工程地质学报, 21(1):6-15. |
殷跃平, 王文沛, 张楠, 等, 2017.强震区高位滑坡远程灾害特征研究:以四川茂县新磨滑坡为例[J].中国地质, 44(5):827-841. |
周琪, 许强, 周书, 等, 2019.基于数值模拟的突发型黄土滑坡运动过程研究:以黑方台陈家8#滑坡为例[J].山地学报, 37(4):528-537. |
Geological map of the Shuicheng landslide in Liupanshui, Guizhou
Structural characteristics of Emeishan basalt in the study area
Image comparison before and after the Shuicheng landslide in Liupanshui, Guizhou Province
Engineering geological profile of the Shuicheng landslide in Liupanshui, Guizhou
Site photos of the source area of the Shuicheng landslide in Liupanshui, Guizhou
Engineering geological profile a-a′ of the source area of the Shuicheng landslide in Liupanshui, Guizhou (The position of the profile is shown in Fig. 1)
Site photos of the erosion area of the Shuicheng landslide in Liupanshui, Guizhou
Engineering geological profile b-b′ of the erosion area of the Shuicheng landslide in Liupanshui, Guizhou (The position of the profile is shown in Fig. 1)
Site photos of the propagation & accumulation area of the Shuicheng landslide in Liupanshui, Guizhou
Engineering geological profile c-c′ of the propagation & accumulation area of the Shuicheng landslide in Liupanshui, Guizhou (The position of the profile is shown in Fig. 1)
DAN model of the Shuicheng landslide in Liupanshui, Guizhou
Three-dimensional trend diagram of the relationship between friction coefficient of the Frictional model, turbulence coefficient of the Voellmy model and landslide movement distance (The motion distance corresponding to the dominant parameters combination is 1355 m)
Three-dimensional trend diagram of the relationship between friction coefficient of the Frictional model, turbulence coefficient of the Voellmy model and thickness of accumulation body in the slip source area (The thickness of the accumulation body corresponding to the dominant parameters combination is 27 m)
Three-dimensional trend diagram of the relationship between friction coefficient of the Frictional model, turbulent coefficient of the Voellmy model and thickness of accumulation body in the accumulation area (The accumulation thickness corresponding to the dominant parameters combination is 15 m)
Velocity distribution map of the Shuicheng landslide in Liupanshui, Guizhou (20 s interval)
Velocity diagram of the front and rear of the Shuicheng landslide with time
Velocity diagram of the front and rear of the Shuicheng landslide with slip distance
Kinetic energy variation diagram of the Shuicheng landslide (20 s interval)
Shape variation diagram of the Shuicheng landslide in movement (20 s interval)