2020 Vol. 26, No. 4
Article Contents

GAO Yang, LI Bin, GAO Haoyuan, HE Kai, LIU Pengfei. 2020. Progress and issues in the research of impact and scraping effect of high-elevation and long-runout landslide. Journal of Geomechanics, 26(4): 510-519. doi: 10.12090/j.issn.1006-6616.2020.26.04.044
Citation: GAO Yang, LI Bin, GAO Haoyuan, HE Kai, LIU Pengfei. 2020. Progress and issues in the research of impact and scraping effect of high-elevation and long-runout landslide. Journal of Geomechanics, 26(4): 510-519. doi: 10.12090/j.issn.1006-6616.2020.26.04.044

Progress and issues in the research of impact and scraping effect of high-elevation and long-runout landslide

  • The impact and scraping effect has always been a hot issue in the dynamics study of high-elevation rock landslide in the southwestern mountainous area of China. On the basis of a large number of field investigations and the current research status at home and abroad, the current basic theory and research methods are summarized. Starting with the typical cases at home and abroad, it is concluded that the impact and scraping modes of high-elevation and long-runout landslides mainly include the embedded shovel-up mode, entrainment mode, impact-slipping mode and impact-splash mode. The difficulties and key issues in the research are put forward. In the aspects of theoretical analysis, numerical calculation, artificial intelligence and risk prediction, future research ideas are prospected. It is aimed to provide an important research basis for the analysis of the disaster pattern and dynamic characteristics of high-elevation landslide under the impact and scraping effect, and to provide technical support for the dynamic research of high-elevation and long-runout landslide, scientific disaster prevention and reduction and scientific rescue work.

  • 加载中
  • BOUCHUT F, FERNÁNDEZ-NIETO E D, MANGENEY A, et al., 2008. On new erosion models of Savage-Hutter type for avalanches[J]. Acta Mechanica, 199(1-4):181-208. doi: 10.1007/s00707-007-0534-9

    CrossRef Google Scholar

    CHENG Q G.1999. The study of dynamic mechanism of rocky landslide with violent starting and high moving speed during full course movements[J]. Chinese Journal of Rock Mechanics and Engineering, 18(1):116. (in Chinese with English abstract)

    Google Scholar

    CHENG Q G, PENG J B, Hu G T, et al., 1999. High speed rockslide dynamics[M]. Chengdu:Southwest Jiaotong University Press. (in Chinese)

    Google Scholar

    CROSTA G B, IMPOSIMATO S, RODDEMAN D.2009. Numerical modelling of entrainment/deposition in rock and debris-avalanches[J]. Engineering Geology, 109(1-2):135-145. doi: 10.1016/j.enggeo.2008.10.004

    CrossRef Google Scholar

    DUFRESNE A.2012. Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events[J]. Earth Surface Processes and Landforms, 37(14):1527-1541. doi: 10.1002/esp.3296

    CrossRef Google Scholar

    ENDO K, SUMITA M, MACHIDA M, et al., 1989. The 1984 collapse and debris avalanche deposits of Ontake Volcano, Central Japan[M]//LATTER J H. Volcanic Hazards. Berlin:Springer-Verlag:210-229.

    Google Scholar

    EVANS S G, GUTHRIE R H, ROBERTS N J, et al., 2007. The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island, Philippines:a catastrophic landslide in tropical mountain terrain. Natural Hazards and Earth System Sciences, 7(1):89-101. doi: 10.5194/nhess-7-89-2007

    CrossRef Google Scholar

    GAO Y, LI B, WANG G Z.2016. Motion feature and numerical simulation analysis of Jiweishan landslide with rapid and long run-out[J]. Journal of Engineering Geology, 24(3):425-434. (in Chinese with English abstract)

    Google Scholar

    GAO Y, YIN Y P, Li B, et al., 2017. Characteristics and numerical runout modeling of the heavy rainfall-induced catastrophic landslide-debris flow at Sanxicun, Dujiangyan, China, following the Wenchuan Ms 8.0 earthquake[J]. Landslides, 14(4):1361-1374. doi: 10.1007/s10346-016-0793-4

    CrossRef Google Scholar

    GAO Y, LI B, GAO H Y, et al., 2020. Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area:a case study of the Shuicheng "7·23" landslide in Guizhou, China[J]. Landslides, 17(7):1663-1677. doi: 10.1007/s10346-020-01377-8

    CrossRef Google Scholar

    GAO Y, HE K, LI Z, et al., 2020. Catastrophic types and dynamics analysis of super-large landslides in karst mountainous areas in southwestern China[J/OL]. Hydrogeological Engineering Geology. doi: 10.16030/j.cnki.issn.1000-3665.202003041.(in Chinese with English abstract)

    Google Scholar

    HE K, GAO Y, WANG W P, et al., 2018. Physical model experimental study on deformation and failure of overlying rock slope under the condition of steep coal seam mining[J]. Journal of Geomechanics, 24(3):399-406. (in Chinese with English abstract)

    Google Scholar

    HE S M, LI X P, WU Y.2008. Research on yield property of soil under rock-fall impact[J]. Chinese Journal of Rock Mechanics and Engineering, 27(S1):2973-2977. (in Chinese with English abstract)

    Google Scholar

    HEIM A.1932. Bergsturz und Menschenleben[M], Naurforschenden Gesellschaft, Zurich, Switzerland.

    Google Scholar

    HU G T, ZHANG K, MAO Y L.1995. Landslide dynamics[M]. Beijing:Geological Publishing House. (in Chinese)

    Google Scholar

    HUANG Y, ZHU C Q.2014. Simulation of flow slides in municipal solid waste dumps using a modified MPS method[J]. Natural Hazards, 74(2):491-508. doi: 10.1007/s11069-014-1194-4

    CrossRef Google Scholar

    HUNGR O, EVANS S G.2004. Entrainment of debris in rock avalanches:an analysis of a long run-out mechanism[J]. Geological Society of America Bulletin, 116(9-10):1240-1252.

    Google Scholar

    HUTTER K, SAVAGE S B, NOHGUCHI Y.1989. Numerical, analytical, and laboratory experimental studies of granular avalanche flows[J]. Annals of Glaciology, 13:109-116. doi: 10.3189/S0260305500007722

    CrossRef Google Scholar

    HU X B, FAN X Y, TANG J J.2019.Accumulation characteristics and energy conversion of high-speed and long-distance landslide on the basis of dem:a case study of Sanxicun landslide[J]. Journal of Geomechanics, 25(4):527-535. (in Chinese with English abstract)

    Google Scholar

    IVERSON R M, REID M E, LOGAN M, et al., 2011. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment[J]. Nature Geoscience, 4(2):116-121. doi: 10.1038/ngeo1040

    CrossRef Google Scholar

    IVERSON R M.2012. Elementary theory of bed-sediment entrainment by debris flows and avalanches[J]. Journal of Geophysical Research:Earth Surface, 117(F3):F03006.

    Google Scholar

    KOLDERUP N H.1955. Raset I Modalen 14. August 1953. Norsk Geologisk Tidsskrift, 34:211-217.

    Google Scholar

    LI B, XIAO W, WANG H W.2018.Analysis of Damage Modulus of Rock[J].China Earthquake Engineering Journal, 40(2):384-388. (in Chinese with English abstract)

    Google Scholar

    LI T H, FAN X Y, JIANG Y J.2018. Study on equivalent impact force and impact distribution range of landslide debris flow with different gradation[J]. Mountain Research, 36(5):740-749. (in Chinese with English abstract)

    Google Scholar

    LI X L, TANG H M, XIONG C R, et al., 2012. Influence of substrate ploughing and erosion effect on process of rock avalanche[J]. Rock and Soil Mechanics, 33(5):1527-1534.1541. (in Chinese with English abstract)

    Google Scholar

    LIU C, ZHANG X Y, XU Q, et al., 2017. Research on energy conservation simulation of three dimensional discrete element model[J]. Chinese Journal of Underground Space and Engineering, 13(S2):698-704. (in Chinese with English abstract)

    Google Scholar

    LIU Y J.2002. Study on fluidifying theory of large high-speed rockslide[D]. Chengdu: Southwest Jiaotong University. (in Chinese)

    Google Scholar

    LU P Y, HOU T X, YANG X G, et al., 2016. Physical modeling test for entrainment effect of landslides and the related mechanism discussion[J]. Chinese Journal of Rock Mechanics and Engineering, 35(6):1225-1232. (in Chinese with English abstract)

    Google Scholar

    LU P Y, YANG X G, SHAO S, et al., 2018. Particle discrete element simulation on punching-shear and scraping effect of landslide-debris flow[J]. Water Resources and Hydropower Engineering, 49(7):19-27. (in Chinese with English abstract).

    Google Scholar

    MANGENEY A, ROCHE O, HUNGR O, et al., 2010. Erosion and mobility in granular collapse over sloping beds[J]. Journal of Geophysical Research:Earth Surface, 115(F3):F03040.

    Google Scholar

    MCDOUGALL S, HUNGR O.2005. Dynamic modelling of entrainment in rapid landslides[J]. Canadian Geotechnical Journal, 42(5):1437-1448. doi: 10.1139/t05-064

    CrossRef Google Scholar

    NIEDERER J.1941. Der felssturz am flimserstein:jahresbericht der naturforschenden gesellschaft graubündens[R]. Chur, 77:3-27

    Google Scholar

    SAVAGE S B, HUTTER K.1991. The dynamics of avalanches of granular materials from initiation to runout. Part I:Analysis[J]. Acta Mechanica, 86(1-4):201-223. doi: 10.1007/BF01175958

    CrossRef Google Scholar

    SOVILLA B, BURLANDO P, BARTELT P.2006. Field experiments and numerical modeling of mass entrainment in snow avalanches[J]. Journal of Geophysical Research:Earth Surface, 111(F3):F03007.

    Google Scholar

    STINY J.1910. Die Muren[M], Wagnerschen Univ., Buchhandlung, Innsbruck, Austria.

    Google Scholar

    TAKAHASHI T.1978. Mechanical characteristics of debris flow[J]. Journal of the Hydraulics Division, 104(8):1153-1169.

    Google Scholar

    WANG G Z, LI B, FENG Z, et al., 2019. Simulation of the process of the Jiguanling rock avalanche in Wulong of Chongqing[J]. Hydrogeology & Engineering Geology, 41(5):101-106. (in Chinese with English abstract)

    Google Scholar

    WANG H Y, GU S L, ZHAO J.2017. Study on numerical simulation of process of landslide accumulation landslide dam based on DEM[J]. Structural Engineers, 33(4):105-110. (in Chinese with English abstract)

    Google Scholar

    WANG L Z.2019. "7·23" landslide in Shuicheng, Guizhou[J]. The Chinese Journal of Geological Hazard and Control, 30(4):8. (in Chinese)

    Google Scholar

    WANG Q, YAO L K.2007. Lattice Boltzmann method and its application in the study on deposition of debris flow[J]. Journal of Catastrophology, 22(3):1-5. (in Chinese with English abstract)

    Google Scholar

    XING A G, WANG G H, LI B, et al., 2015. Long-runout mechanism and landsliding behaviour of large catastrophic landslide triggered by heavy rainfall in Guanling, Guizhou, China[J]. Canadian Geotechnical Journal, 52(7):971-981. doi: 10.1139/cgj-2014-0122

    CrossRef Google Scholar

    XU Q, HUANG R Q, YIN Y P, et al., 2009. The Jiweishan landslide of June 5.2009 in Wulong, Chongqing:characteristics and failure mechanism[J]. Journal of Engineering Geology, 17(4):433-444. (in Chinese with English abstract)

    Google Scholar

    XU Q, LI W L, DONG X J, et al., 2017. The Xinmocun landslide on June 24.2017 in Maoxian, Sichuan:characteristics and failure mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 36(11):2612-2628. (in Chinese with English abstract)

    Google Scholar

    XU Q, ZHENG G, LI W L, et al., 2018. Study on successive landslide damming events of Jinsha river in Baige village on Octorber 11 and November 3.2018[J]. Journal of Engineering Geology, 26(6):1534-1551. (in Chinese with English abstract)

    Google Scholar

    YAN C, YU J, XU J L, et al., 2011. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics, 41(5):562-589. (in Chinese)

    Google Scholar

    YIN Y P.2000. Rapid huge landslide and hazard reduction of Yigong River in the Bomi, Tibet[J]. Hydrogeology and Engineering Geology, 27(4):8-11. (in Chinese with English abstract)

    Google Scholar

    YIN Y P.2009. Rapid and long run-out features of landslides triggered by the Wenchuan earthquake[J]. Journal of Engineering Geology, 17(2):153-166. (in Chinese with English abstract)

    Google Scholar

    YIN Y P.2010. Mechanism of apparent dip slide of inclined bedding rockslide-a case study of Jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 29(2):217-226. (in Chinese with English abstract)

    Google Scholar

    YIN Y P, XING A G, WANG G H, et al., 2017. Experimental and numerical investigations of a catastrophic long-runout landslide in Zhenxiong, Yunnan, southwestern China[J]. Landslides, 14(2):649-659. doi: 10.1007/s10346-016-0729-z

    CrossRef Google Scholar

    ZHANG L, TANG H M, XIONG C R, et al., 2012. Movement process simulation of high-speed long-distance Jiweishan landslide with PFC3D[J]. Chinese Journal of Rock Mechanics and Engineering, 31(S1):2601-2611. (in Chinese with English abstract)

    Google Scholar

    ZHANG M, YIN Y P, WU S R, et al., 2010. Development status and prospects of studies on kinematics of long runout rock avalanches[J]. Journal of Engineering Geology, 18(6):805-817. (in Chinese with English abstract)

    Google Scholar

    ZHANG M, MCSAVENEY M, SHAO H, et al., 2018. The 2009 Jiweishan rock avalanche, Wulong, China:Precursor conditions and factors leading to failure[J]. Engineering Geology, 233:225-230. doi: 10.1016/j.enggeo.2017.12.010

    CrossRef Google Scholar

    ZHENG G, XU Q, JU Y Z, et al., 2018. The Pusacun rockavalanche on August 28.2017 in Zhangjia-wan nayongxian, Guizhou:characteristics and failure mechanism[J]. Journal of Engineering Geology, 26(1):223-240. (in Chinese with English abstract)

    Google Scholar

    ZHOU J W, CUI P, HAO M H.2016. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China[J]. Landslides, 13(1):39-54. doi: 10.1007/s10346-014-0553-2

    CrossRef Google Scholar

    程谦恭.1999.剧冲式高速岩质滑坡运动全过程动力学机制研究[J].岩石力学与工程学报, 18(1):116.

    Google Scholar

    程谦恭, 彭建兵, 胡广韬, 等.1999.高速岩质滑坡动力学[M].成都:西南交通大学出版社.

    Google Scholar

    高杨, 李滨, 王国章.2016.鸡尾山高速远程滑坡运动特征及数值模拟分析[J].工程地质学报, 24(3):425-434. doi: 10.13544/j.cnki.jeg.2016.03.012

    CrossRef Google Scholar

    高杨, 贺凯, 李壮, 等.2020.西南岩溶山区特大滑坡成灾类型及动力学分析[J/OL].水文地质工程地质. doi: 10.16030/j.cnki.issn.1000-3665.202003041.

    Google Scholar

    贺凯, 高杨, 王文沛, 等.2018.陡倾煤层开采条件下上覆山体变形破坏物理模型试验研究[J].地质力学学报, 24(3):399-406.

    Google Scholar

    何思明, 李新坡, 吴永.2008.滚石冲击荷载作用下土体屈服特性研究[J].岩石力学与工程学报, 27(S1):2973-2977.

    Google Scholar

    胡广韬, 张珂, 毛延龙.1995.滑坡动力学[M].北京:地质出版社.

    Google Scholar

    胡晓波, 樊晓一, 唐俊杰.2019.基于离散元的高速远程滑坡运动堆积特征及能量转化研究:以三溪村滑坡为例[J].地质力学学报, 25(4):527-535.

    Google Scholar

    李天话, 樊晓一, 姜元俊.2018.不同颗粒级配滑坡碎屑流等效冲击力及作用位置分布研究[J].山地学报, 36(5):740-749.

    Google Scholar

    李祥龙, 唐辉明, 熊承仁, 等.2012.基底刮铲效应对岩石碎屑流停积过程的影响[J].岩土力学, 33(5):1527-1534.1541. doi: 10.3969/j.issn.1000-7598.2012.05.039

    CrossRef Google Scholar

    刘春, 张晓宇, 许强, 等.2017.三维离散元模型的滑坡能量守恒模拟研究[J].地下空间与工程学报, 13(S2):698-704.

    Google Scholar

    刘涌江.2002.大型高速岩质滑坡流体化理论研究[D].成都: 西南交通大学.

    Google Scholar

    陆鹏源, 侯天兴, 杨兴国, 等.2016.滑坡冲击铲刮效应物理模型试验及机制探讨[J].岩石力学与工程学报, 35(6):1225-1232.

    Google Scholar

    陆鹏源, 杨兴国, 邵帅, 等.2018.滑坡-碎屑流冲切铲刮效应的颗粒离散元模拟[J].水利水电技术, 49(7):19-27. doi: 10.13928/j.cnki.wrahe.2018.07.003

    CrossRef Google Scholar

    李博, 肖威, 王华伟.2018.岩石损伤模量分析[J].地震工程学报, 40(2):384-388. doi: 10.3969/j.issn.1000-0844.2018.02.384

    CrossRef Google Scholar

    王国章, 李滨, 冯振, 等.2014.重庆武隆鸡冠岭岩质崩滑-碎屑流过程模拟[J].水文地质工程地质, 41(5):101-106.

    Google Scholar

    王洋海, 顾声龙, 赵杰.2017.基于DEM的滑坡堆积堰塞湖过程数值研究[J].结构工程师, 33(4):105-110.

    Google Scholar

    王立朝.2019.贵州水城"7·23"特大山体滑坡[J].中国地质灾害与防治学报, 30(4):8.

    Google Scholar

    王沁, 姚令侃.2007.格子Boltzmann方法及其在泥石流堆积研究中的应用[J].灾害学, 22(3):1-5. doi: 10.3969/j.issn.1000-811X.2007.03.001

    CrossRef Google Scholar

    许强, 黄润秋, 殷跃平, 等.2009. 2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J].工程地质学报, 17(4):433-444.

    Google Scholar

    许强, 李为乐, 董秀军, 等.2017.四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J].岩石力学与工程学报, 36(11):2612-2628. doi: 10.13722/j.cnki.jrme.2017.0855

    CrossRef Google Scholar

    许强, 郑光, 李为乐, 等.2018. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J].工程地质学报, 26(6):1534-1551. doi: 10.13544/j.cnki.jeg.2018-406

    CrossRef Google Scholar

    阎超, 于剑, 徐晶磊, 等.2011. CFD模拟方法的发展成就与展望[J].力学进展, 41(5):562-589. doi: 10.6052/1000-0992-2011-5-lxjzj2010-082

    CrossRef Google Scholar

    殷跃平.2000.西藏波密易贡高速巨型滑坡特征及减灾研究[J].水文地质工程地质, 27(4):8-11. doi: 10.3969/j.issn.1000-3665.2000.04.003

    CrossRef Google Scholar

    殷跃平.2009.汶川八级地震滑坡高速远程特征分析[J].工程地质学报, 17(2):153-166.

    Google Scholar

    殷跃平.2010.斜倾厚层山体滑坡视向滑动机制研究:以重庆武隆鸡尾山滑坡为例[J].岩石力学与工程学报, 29(2):217-226.

    Google Scholar

    张龙, 唐辉明, 熊承仁, 等.2012.鸡尾山高速远程滑坡运动过程PFC3D模拟[J].岩石力学与工程学报, 31(S1):2601-2611. doi: 10.3969/j.issn.1000-6915.2012.z1.002

    CrossRef Google Scholar

    张明, 殷跃平, 吴树仁, 等.2010.高速远程滑坡-碎屑流运动机理研究发展现状与展望[J].工程地质学报, 18(6):805-817. doi: 10.3969/j.issn.1004-9665.2010.06.001

    CrossRef Google Scholar

    郑光, 许强, 巨袁臻, 等.2018. 2017年8月28日贵州纳雍县张家湾镇普洒村崩塌特征与成因机理研究[J].工程地质学报, 26(1):223-240. doi: 10.13544/j.cnki.jeg.2018.01.023

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(1574) PDF downloads(81) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint