Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 5
Article Contents

LIU Tong-tong, QIANG Yin-di, HUANG Deng-li. Determination of Trace Silver in Geochemical Samples by Inductively Coupled Plasma-Mass Spectrometry with Phosphoric Acid Precipitation Separation[J]. Rock and Mineral Analysis, 2021, 40(5): 650-658. doi: 10.15898/j.cnki.11-2131/td.202105060058
Citation: LIU Tong-tong, QIANG Yin-di, HUANG Deng-li. Determination of Trace Silver in Geochemical Samples by Inductively Coupled Plasma-Mass Spectrometry with Phosphoric Acid Precipitation Separation[J]. Rock and Mineral Analysis, 2021, 40(5): 650-658. doi: 10.15898/j.cnki.11-2131/td.202105060058

Determination of Trace Silver in Geochemical Samples by Inductively Coupled Plasma-Mass Spectrometry with Phosphoric Acid Precipitation Separation

  • BACKGROUND

    Standard mode with interference correction or kinetic energy discrimination mode is commonly used for the determination of trace silver in geochemical samples by inductively coupled plasma-mass spectrometry (ICP-MS). Interference of both stable isotopes of silver occurs in the mass spectrum of the oxides or hydroxides of zirconium and niobium. Moreover, for samples with a higher content of interfering elements and a lower content of silver, the determination accuracy is low, requiring separation of the interfering element from silver in the solution.

    OBJECTIVES

    To develop a method for the determination of trace Ag in geochemical samples.

    METHODS

    Common sample digestion methods and chemical separation (ion exchange separation) were introduced in detail and were discussed in this paper.

    RESULTS

    As proved by first grade standard materials, the result was consistent with standard recommended values, with the relative standard deviation of 4.3%-12.1% (n=12). The detection limit (3SD) of the method was 0.0072μg/g.

    CONCLUSIONS

    This method is suitable for the determination of trace silver in soil, stream sediment and rock samples. The introduction of phosphoric acid does not affect the determination of other conventional elements, and the same digestion solution can be used to determine Ag and other elements.

  • 加载中
  • [1] 《岩石矿物分析》编委会. 岩石矿物分析(第四版第三分册)[M]. 北京: 地质出版社, 2011: 639-647.

    Google Scholar

    The editorial committee of 《Rock and mineral analysis》. Rock and mineral analysis (The fourth edition: Vol. Ⅲ)[M]. Beijing: Geological Pubilishing House, 2011: 639-647.

    Google Scholar

    [2] 杨凤云, 高会艳, 徐霞, 等. 火焰原子吸收分光光度法测定铅精矿中高含量银[J]. 化学分析计量, 2019, 28(6): 91-94.

    Google Scholar

    Yang F Y, Gao H Y, Xu X, et al. Determination of high silver content in lead concentrate by flame atomic absorption spectrophotometry[J]. Chemical Analysis and Meterage, 2019, 28(6): 91-94.

    Google Scholar

    [3] 史洁, 宋志敏, 白露, 等. 石墨炉原子吸收光谱法测定土壤中的银[J]. 化学分析计量, 2019, 28(3): 81-83. doi: 10.3969/j.issn.1008-6145.2019.03.020

    CrossRef Google Scholar

    Shi J, Song Z M, Bai L. Determination of silver in soil by graphite furnace atomic absorption spectrometry[J]. Chemical Analysis and Meterage, 2019, 28(3): 81-83. doi: 10.3969/j.issn.1008-6145.2019.03.020

    CrossRef Google Scholar

    [4] 张亮亮, 雷亚宁. 石墨炉原子吸收光谱法直接测定铁镍基高温合金中的银、砷、铋、铅、硒、碲[J]. 化学试剂, 2018, 40(4): 348-352.

    Google Scholar

    Zhang L L, Lei Y N. Direct determination of silver, arsenic, bismuth, lead, selenium and tellurium in iron-nickel-base superalloy by graphite furnace atomic absorption spectrometry method[J]. Chemical Reagents, 2018, 40(4): 348-352.

    Google Scholar

    [5] 李小辉, 孙慧莹, 于亚辉, 等. 交流电弧发射光谱法测定地球化学样品中银锡硼[J]. 冶金分析, 2017, 37(4): 16-21.

    Google Scholar

    Li X H, Sun H Y, Yu Y Y, et al. Determination of sliver, tin, boron in geochemical sample by alternating current (AC) arc emission spectrometry[J]. Metallurgical Analysis, 2017, 37(4): 16-21.

    Google Scholar

    [6] 肖细炼, 王亚夫, 陈燕波, 等. 交流电弧光电直读发射光谱法测定地球化学样品中银硼锡[J]. 冶金分析, 2018, 38(7): 27-32.

    Google Scholar

    Xiao X L, Wang Y F, Chen Y B, et al. Determination of silver, boron and tin in geochemical samples by alternating current arc optoelectronic direct reading emission spectrometry[J]. Metallurgical Analysis, 2018, 38(7): 27-32.

    Google Scholar

    [7] 朱若华, 王娟, 施燕支. 电感耦合等离子体质谱法测定植物中痕量钯的光谱干扰消除方法的研究[J]. 光谱学与光谱分析, 2007, 27(4): 792-795. doi: 10.3321/j.issn:1000-0593.2007.04.042

    CrossRef Google Scholar

    Zhu R H, Wang J, Shi Y Z. Elimination of spectral interference in the determination of trace palladium in plants by inductively coupled plasma-mass spectrometry[J]. Spectroscopy and Spectral Analysis, 2007, 27(4): 792-795. doi: 10.3321/j.issn:1000-0593.2007.04.042

    CrossRef Google Scholar

    [8] Serap K A, Hikmet D, Nilgün P, et al. Analyses of mineral content and heavy metal of honey samples from south and east region of Turkey by using ICP-MS[J]. International Journal of Analytical Chemistry, 2017, 8: 1-6.

    Google Scholar

    [9] Reimann C, Caritat P. Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil[J]. Science of The Total Environment, 2017, 578: 633-648. doi: 10.1016/j.scitotenv.2016.11.010

    CrossRef Google Scholar

    [10] Michael O, Matt Z, Carol C, et al. Multi-element analysis and geochemical spatial trends of groundwater in rural northern New York[J]. Water, 2010, 2(2): 217. doi: 10.3390/w2020217

    CrossRef Google Scholar

    [11] 黄慧敏, 胡芳, 侯玉兰. 电感耦合等离子体质谱(ICP-MS)法测定废水中有害元素银的含量[J]. 中国无机分析化学, 2020, 10(6): 14-17. doi: 10.3969/j.issn.2095-1035.2020.06.004

    CrossRef Google Scholar

    Hang H M, Hu F, Hou Y L. Determination of harmful element silver in waste water by inductively coupled plasma mass spectrometry (ICP-MS)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(6): 14-17. doi: 10.3969/j.issn.2095-1035.2020.06.004

    CrossRef Google Scholar

    [12] 张俊文, 孟俊伦, 赵志琦, 等. 多接收电感耦合等离子体质谱法准确测定天然地质样品中的锂同位素组成[J]. 分析化学, 2019, 47(3): 415-422.

    Google Scholar

    Zhang J W, Meng J L, Zhao Z Q, et al. Accurate determination of lithium isotopic compositions in geological samples by multi-collector inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 415-422.

    Google Scholar

    [13] 陈文, 樊小伟, 郭才女, 等. 电感耦合等离子体串联质谱法测定高纯稀土中铁的含量[J]. 分析化学, 2019, 47(3): 403-409.

    Google Scholar

    Chen W, Fan X W, Guo C N, et al. Determination of iron content in high purity rare earth by inductively coupled plasma-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 403-409.

    Google Scholar

    [14] Zhao S K, Guo K, Zong T, et al. Geochemical features of trace and rare earth elements of pumice in middle Okinawa trough and its indication of magmatic process[J]. Journal of Ocean University of China, 2017, 16(2): 233-242. doi: 10.1007/s11802-017-3131-0

    CrossRef Google Scholar

    [15] 张亚峰, 冯俊, 唐杰, 等. 基于五酸溶样体系-ICP-MS同时测定地质样品中稀土等46种元素[J]. 质谱学报, 2016, 37(2): 186-192.

    Google Scholar

    Zhang Y F, Feng J, Tang J, et al. Simultaneous determination of 46 species of micro, trace and rare earth elements by ICP-MS based on the system of five-acids dissolution of sample[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(2): 186-192.

    Google Scholar

    [16] 边朋沙, 李晓敬, 申玉民, 等. 电感耦合等离子体质谱法测定地质样品中痕量碲[J]. 冶金分析, 2018, 38(6): 25-30.

    Google Scholar

    Bian P S, Li X J, Shen Y M, et al. Determination of trace tellurium in geological sample by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2018, 38(6): 25-30.

    Google Scholar

    [17] 徐进力, 邢夏, 刘彬, 等. 电感耦合等离子体质谱法测定铁矿石中的痕量钼元素[J]. 质谱学报, 2018, 39(2): 240-249.

    Google Scholar

    Xu J L, Xing X, Liu B, et al. Determination of trace element molybdenum in iron ore by inductively coupled plasma mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(2): 240-249.

    Google Scholar

    [18] Chao C C, Hui T L, Shuuh J J. Bandpass reaction cell inductively coupled plasma mass spectrometry for the determination of silver and cadmium in samples in the presence of excess Zr, Nb and Mo[J]. Analytica Chimica Acta, 2003, 493(2): 213-218. doi: 10.1016/S0003-2670(03)00875-4

    CrossRef Google Scholar

    [19] 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007: 140-142.

    Google Scholar

    Chi Q H, Yan M C. Handbook of elemental abundance for applied geochemistry[M]. Beijing: Geological Publishing House, 2007: 140-142.

    Google Scholar

    [20] 周丽萍, 李中玺. 王水提取-电感耦合等离子体质谱法同时测定地质样品中微量银, 镉, 铋[J]. 分析试验室, 2005, 24(9): 20-25. doi: 10.3969/j.issn.1000-0720.2005.09.006

    CrossRef Google Scholar

    Zhou L P, Li Z Y. Determination of silver, cadmium and bismuth in geological samples by inductively coupled plasma mass spectrometry with aqua regia treatment[J]. Chinese Journal of Analysis Laboratory, 2005, 24(9): 20-25. doi: 10.3969/j.issn.1000-0720.2005.09.006

    CrossRef Google Scholar

    [21] 杨艳明. 电感耦合等离子体质谱法测定水系沉积物中银铜砷锑铋镉[J]. 冶金分析, 2019, 39(7): 58-64.

    Google Scholar

    Yang Y M. Determination of silver, copper, arsenic, antimony, bismuth and cadmium in stream sediment by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2019, 39(7): 58-64.

    Google Scholar

    [22] 邢智, 漆亮. P507萃淋树脂分离-电感耦合等离子体质谱法快速测定化探样品中的银[J]. 岩矿测试, 2013, 32(3): 398-401. doi: 10.3969/j.issn.0254-5357.2013.03.007

    CrossRef Google Scholar

    Xing Z, Qi L. Separation with P507 levextrel resin for rapid determination of Ag in geochemical exploration samples by ICP-MS[J]. Rock and Mineral Analysis, 2013, 32(3): 398-401. doi: 10.3969/j.issn.0254-5357.2013.03.007

    CrossRef Google Scholar

    [23] 邢智, 漆亮. P507负载泡塑分离-电感耦合等离子体质谱法同时测定化探样品中银钨钼[J]. 岩矿测试, 2014, 33(4): 486-490. doi: 10.3969/j.issn.0254-5357.2014.04.005

    CrossRef Google Scholar

    Xing Z, Qi L. Simultaneous determination of Ag, W and Mo in geochemical exploration samples by ICP-MS using P507 loaded foam for separation[J]. Rock and Mineral Analysis, 2014, 33(4): 486-490. doi: 10.3969/j.issn.0254-5357.2014.04.005

    CrossRef Google Scholar

    [24] 孙朝阳, 戴雪峰, 代小吕, 等. 氨水分离-电感耦合等离子体质谱法测定化探样品中的银[J]. 岩矿测试, 2015, 34(3): 292-296.

    Google Scholar

    Sun C Y, Dai X F, Dai X L, et al. Determination of silver in samples for geochemical exploration by inductively coupled plasma-mass spectrometry after ammonia complexation[J]. Rock and Mineral Analysis, 2015, 34(3): 292-296.

    Google Scholar

    [25] 刘海明, 武明丽, 成景特. 酸溶分离-电感耦合等离子体质谱内标法测定地质样品中的痕量银[J]. 岩矿测试, 2021, 40(3): 444-450.

    Google Scholar

    Liu H M, Wu M L, Cheng J T. Determination of trace silver in geological samples by inductively coupled plasma-mass spectrometry with acid decomposition and internal standard calibration[J]. Rock and Mineral Analysis, 2021, 40(3): 444-450.

    Google Scholar

    [26] 徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394-402.

    Google Scholar

    Xu J L, Xing X, Tang R L. et al. Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394-402.

    Google Scholar

    [27] 刘静波, 张更宇. 全自动消解电感耦合等离子体质谱仪测定环境土壤中铍钡铊银[J]. 分析试验室, 2018, 37(2): 207-212.

    Google Scholar

    Liu J B, Zhang G Y. Determination of Be, Ba, Ti and Ag in environmental soil by inductively coupled plasma mass spectrometry with automatic digestion instrument[J]. Chinese Journal of Analysis Laboratory, 2018, 37(2): 207-212.

    Google Scholar

    [28] Scott D T, Vladimir I B, Dmirty R B. Reaction cells and collision cells for ICP-MS: A tutorial review[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2002, 57: 1361-1452. doi: 10.1016/S0584-8547(02)00069-1

    CrossRef Google Scholar

    [29] 王家恒, 刘冬云. 动态反应池-电感耦合等离子体质谱法同时测定地质样品中的金和银[J]. 分析试验室, 2017, 36(7): 819-822.

    Google Scholar

    Wang J H, Liu D Y. Determination of Au and Ag in geological samples by dynamic reaction cell-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2017, 36(7): 819-822.

    Google Scholar

    [30] 李冰, 杨红霞. 电感耦合等离子体质谱原理和应用[M]. 北京: 地质出版社, 2005: 85-106.

    Google Scholar

    Li B, Yang H X. Principle and application of inductively coupled plasma mass spectrometry[M]. Beijing: Geological Publishing House, 2005: 85-106.

    Google Scholar

    [31] 《无机化学丛书》编委会. 无机化学丛书第八卷钛分族, 钒分族, 铬分族[M]. 北京: 科学出版社, 1995: 134-135.

    Google Scholar

    The editorial committee of 《Inorganic chemistry series》. Inorganic chemistry series (Vol. 8). Titanium, vanadium and chromium[M]. Beijing: Science Press, 1995: 134-135.

    Google Scholar

    [32] 李艳平, 李沪萍, 孙彦琳, 等. NZP族磷酸盐晶体化合物NH4Zr2(PO4)3的水热合成[J]. 硅酸盐学报, 2009, 37(10): 1639-1644. doi: 10.3321/j.issn:0454-5648.2009.10.009

    CrossRef Google Scholar

    Li Y P, Li H P, Sun Y L, et al. Hydrothermal synthesis of NH4Zr2(PO4)3 belonging to NZP family[J]. Journal of the Chinese Ceramic Society, 2009, 37(10): 1639-1644. doi: 10.3321/j.issn:0454-5648.2009.10.009

    CrossRef Google Scholar

    [33] 吴希桃. 氧化钪制备过程中磷酸和磷酸钠组合除锆工艺研究[J]. 矿冶工程, 2018, 38(3): 115-117, 122. doi: 10.3969/j.issn.0253-6099.2018.03.028

    CrossRef Google Scholar

    Wu X T. Zirconium removal by a combination of phosphoric acid and sodium phosphate in the preparation of scandium oxide[J]. Mining and Metallurgical Engineering, 2018, 38(3): 115-117, 122. doi: 10.3969/j.issn.0253-6099.2018.03.028

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(3)

Article Metrics

Article views(1267) PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint