Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 5
Article Contents

ZHANG Ya, LI Quan-zhong, YAN Jun, XIE Jian-cheng, YANG Qing-liang, GAO Ling. Analytical Conditions for U-Th-Pb Dating of Monazite by LA-ICP-MS[J]. Rock and Mineral Analysis, 2021, 40(5): 637-649. doi: 10.15898/j.cnki.11-2131/td.202101130005
Citation: ZHANG Ya, LI Quan-zhong, YAN Jun, XIE Jian-cheng, YANG Qing-liang, GAO Ling. Analytical Conditions for U-Th-Pb Dating of Monazite by LA-ICP-MS[J]. Rock and Mineral Analysis, 2021, 40(5): 637-649. doi: 10.15898/j.cnki.11-2131/td.202101130005

Analytical Conditions for U-Th-Pb Dating of Monazite by LA-ICP-MS

More Information
  • BACKGROUND

    Compared with zircon U-Pb dating, monazite has more advantages in the dating of some metamorphic rocks or highly differentiated rocks. However, the U-Th-Pb isotopic dating of monazite has been limited, because of high Th concentration (commonly>7%), many mineral inclusions, and rare dating standard samples. Previous research on LA-ICP-MS U-Th-Pb dating of monazite mainly focused on laser parameters, and lacked attention on ICP-MS conditions.

    OBJECTIVES

    To find suitable experimental LA-ICP-MS monazite dating conditions.

    METHODS

    Using 193nm ArF excimer laser ablation system and Agilent 7500a inductively coupled plasma-mass spectrometer, laser parameters (laser beam spot diameter and laser frequency) and ICP-MS parameters(dwelling time of 232Th) were investigated. The laser beam spot diameter was set to 24μm, 16μm and 10μm, and the laser frequency was set to 3Hz, 4Hz and 5Hz. The dwelling time of 232Th was set to 10ms, 6ms, 3ms and 1ms for U-Th-Pb dating. Finally, the monazite sample RW-1 was used as the standard sample to calibrate the monazite sample Bananeira.

    RESULTS

    It was suitable for monazite dating when the beam spot diameter was 16μm, the dwelling time of 232Th was 3ms or 1ms, the energy density was 4J/cm2, the laser frequency was 5Hz, the carrier gas (He) flow rate was 0.35L/min, and the carrier gas (Ar) flow rate was 0.95L/min. Under these conditions, Bananeira's weighted average ages of 207Pb/235U were 510.7±8.6Ma (MSWD=0.87), and 513.8±5.7Ma (MSWD=0.38), which were consistent with the recommended age of 507.7±1.3Ma with respective errors of 0.59% and 1.20%. 208Pb/232Th weighted average ages were 496.9±8.6Ma (MSWD=0.596) and 499.8±5.6Ma (MSWD=0.37), which were consistent with the recommended age of 497.6±1.6Ma, with respective errors of 0.14% and 0.44%. The 207Pb/235U weighted average age of Huangshan sample HS-1 was 128.3±2.4Ma (MSWD=0.73), which were close to the zircon age of 127.0±2.1Ma (MSWD=0.93) in the Huangshan area.

    CONCLUSIONS

    The optimal laser and ICP-MS conditions are suitable for monazite U-Th-Pb isotopic age determination.

  • 加载中
  • [1] Williams M L, Jercinovic M J, Hetherington C J. Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology[J]. Annual Review of Earth and Planetary Sciences, 2007, 35(1): 137-175. doi: 10.1146/annurev.earth.35.031306.140228

    CrossRef Google Scholar

    [2] Chiaradia M, Schaltegger U, Spikings R, et al. How accurately can we date the duration of magmatic-hydrothermal events in porphyry systems?-An invited paper[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 2013, 108(4): 565-584. doi: 10.2113/econgeo.108.4.565

    CrossRef Google Scholar

    [3] Wu Y B, Wang H, Gao S, et al. LA-ICP-MS monazite U-Pb age and trace element constraints on the granulite-facies metamorphism in the Tongbai Orogen, central China[J]. Journal of Asian Earth Sciences, 2014, 82: 90-102. doi: 10.1016/j.jseaes.2013.12.016

    CrossRef Google Scholar

    [4] Hogdahl K, Majka J, Sjostrom H, et al. Reactive monazite and robust zircon growth in diatexites and leucogranites from a hot, slowly cooled orogen: Implications for the Palaeoproterozoic tectonic evolution of the central Fennoscandian Shield, Sweden[J]. Contributions to Mineralogy and Petrology, 2012, 163(1): 167-188. doi: 10.1007/s00410-011-0664-x

    CrossRef Google Scholar

    [5] 吴黎光, 李献华. 独居石微区同位素和元素分析及地质应用[J]. 矿物岩石地球化学通报, 2020, 39(6): 1077-1094, 1064, 1066.

    Google Scholar

    Wu L G, Li X H. Isotopic and elemental analysis of monazite and its geological application[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(6): 1077-1094, 1064, 1066.

    Google Scholar

    [6] Meldrum A, Boatner L A, Weber W J, et al. Radiation damage in zircon and monazite[J]. Geochimica Et Cosmochimica Acta, 1998, 62(14): 2509-2520. doi: 10.1016/S0016-7037(98)00174-4

    CrossRef Google Scholar

    [7] Liu X C, Wu F Y, Yu L J, et al. Emplacement age of leucogranite in the Kampa Dome, southern Tibet[J]. Tectonophysics, 2016, 667: 163-175. doi: 10.1016/j.tecto.2015.12.001

    CrossRef Google Scholar

    [8] 胡国辉, 周艳艳, 张拴宏, 等. 吕梁地区古元古代花岗片麻岩成因及变质时代: 锆石和独居石U-Pb年龄及锆石Hf同位素证据[J]. 岩石学报, 2020, 36(12): 3631-3653. doi: 10.18654/1000-0569/2020.12.05

    CrossRef Google Scholar

    Hu G H, Zhou Y Y, Zhang S H, et al. Petrogenesis and metamorphic age of Palaeoproterozoic granitic gneisses in Lüliang area: Constraints from zircon and monazite U-Pb ages and Hf isotopes[J]. Acta Petrologica Sinica, 2020, 36(12): 3631-3653. doi: 10.18654/1000-0569/2020.12.05

    CrossRef Google Scholar

    [9] Barnes C, Majka J, Schneider D, et al. High-spatial re-solution dating of monazite and zircon reveals the timing of subduction-exhumation of the Vaimok Lens in the Seve Nappe Complex (Scandinavian Caledonides)[J]. Contributions to Mineralogy and Petrology, 2019, 174(1): 5. doi: 10.1007/s00410-018-1539-1

    CrossRef Google Scholar

    [10] Skipton D R, Schneider D A, Mcfarlane C, et al. Multi-stage zircon and monazite growth revealed by depth profiling and in situ U-Pb geochronology: Resolving the Paleoproterozoic tectonics of the Trans-Hudson Orogen on southeastern Baffin Island, Canada[J]. Precambrian Research, 2016, 285: 272-298. doi: 10.1016/j.precamres.2016.09.002

    CrossRef Google Scholar

    [11] 王佳营, 李志丹, 张祺, 等. 东秦岭地区碳酸岩型钼-铀多金属矿床成矿时代: 来自LA-ICP-MS独居石U-Pb和辉钼矿Re-Os年龄的证据[J]. 地质学报, 2020, 94(10): 2946-2964. doi: 10.3969/j.issn.0001-5717.2020.10.011

    CrossRef Google Scholar

    Wang J D, Li Z D, Zhang Q, et al. Metallogenic epoch of the carbonatite-type Mo-U polymetallic deposit in east Qinling: Evidence from the monazite LA-ICP-MS U-Pb and molybdenite Re-Os isotopic dating[J]. Acta Geologica Sinica, 2020, 94(10): 2946-2964. doi: 10.3969/j.issn.0001-5717.2020.10.011

    CrossRef Google Scholar

    [12] Lehmann B, Zoheir B A, Neymark L A, et al. Monazite and cassiterite U-Pb dating of the Abu Dabbab rare-metal granite, Egypt: Late Cryogenian metalliferous granite magmatism in the Arabian-Nubian Shield[J]. Gondwana Research, 2020, 84: 71-80. doi: 10.1016/j.gr.2020.03.001

    CrossRef Google Scholar

    [13] Yan T, Liu D, Si C, et al. Coupled U-Pb geochronology of monazite and zircon for the Bozhushan batholith, southeast Yunnan Province, China: Implications for regional metallogeny[J]. Minerals, 2020, 10(3): 239-253. doi: 10.3390/min10030239

    CrossRef Google Scholar

    [14] Martial F T, Rigobert T, Anne S A, et al. Evidence for Nb-Ta occurrences in the syn-tectonic Pan-African Mayo Salah Leucogranite (northern Cameroon): Constraints from Nb-Ta oxide mineralogy, geochemistry and U-Pb LA-ICP-MS geochronology on columbite and monazite[J]. Minerals, 2018, 8(5): 2-36.

    Google Scholar

    [15] Machado N, Gauthier G. Determination of 207Pb/206Pb ages on zircon and monazite by laser-ablation ICP-MS and application to a study of sedimentary provenance and metamorphism in southeastern Brazil[J]. Geochimica Et Cosmochimica Acta, 1996, 60(24): 5063-5073. doi: 10.1016/S0016-7037(96)00287-6

    CrossRef Google Scholar

    [16] Paquette J L, Tiepolo M. High resolution (5μm) U-Th-Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS[J]. Chemical Geology, 2007, 240(3-4): 222-237. doi: 10.1016/j.chemgeo.2007.02.014

    CrossRef Google Scholar

    [17] 王倩, 侯可军. 独居石LA-ICP-MS微区原位U-Pb同位素年龄测定[J]. 地质学报, 2015, 89(10): 41-43.

    Google Scholar

    Wang Q, Hou K J. LA-ICP-MS in situ U-Pb isotopic dating of monazite[J]. Acta Geologica Sinica, 2015, 89(10): 41-43.

    Google Scholar

    [18] 汪双双, 韩延兵, 李艳广, 等. 利用LA-ICP-MS在16μm和10μm激光束斑条件下测定独居石U-Th-Pb年龄[J]. 岩矿测试, 2016, 35(4): 349-367.

    Google Scholar

    Wang S S, Han Y B, Li Y G, et al. U-Th-Pb dating of monazite by LA-ICP-MS using ablation spot sizes of 16μm and 10μm[J]. Rock and Mineral Analysis, 2016, 35(4): 349-367.

    Google Scholar

    [19] 洪文兴, 朱祥坤. 独居石微粒微区成分分布的研究[J]. 高校地质学报, 2000, 6(2): 167-172. doi: 10.3969/j.issn.1006-7493.2000.02.009

    CrossRef Google Scholar

    Hong W X, Zhu X K. Study on the composition distribution of monazite particles[J]. Geological Journal of China Universities, 2000, 6(2): 167-172. doi: 10.3969/j.issn.1006-7493.2000.02.009

    CrossRef Google Scholar

    [20] Richter M, Nebel-Jacobsen Y, Nebel O, et al. Assess-ment of five monazite reference materials for U-Th/Pb dating using laser-ablation ICP-MS[J]. Geosciences, 2019, 9(9): 391-412. doi: 10.3390/geosciences9090391

    CrossRef Google Scholar

    [21] Kohn M J, Vervoort J D. U-Th-Pb dating of monazite by single collector ICP-MS: Pitfalls and potential[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): 1-16.

    Google Scholar

    [22] Gilbert S, Olin P, Thompson J, et al. Matrix dependency for oxide production rates by LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(3): 638-646. doi: 10.1039/C6JA00395H

    CrossRef Google Scholar

    [23] 崔玉荣, 周红英, 耿建珍, 等. LA-MC-ICP-MS独居石微区原位U-Pb同位素年龄测定[J]. 地球学报, 2012, 33(6): 865-876.

    Google Scholar

    Cui Y R, Zhou H Y, Geng J Z, et al. In situ LA-MC-ICP-MS U-Pb isotopic dating of monazite[J]. Acta Geoscientica Sinica, 2012, 33(6): 865-876.

    Google Scholar

    [24] Ling X X, Magdalena H, Huyskens, et al. Monazite RW-1: A homogenous natural reference material for SIMS U-Pb and Th-Pb isotopic analysis[J]. Mineral Petrology, 2017, 111(2): 163-172. doi: 10.1007/s00710-016-0478-7

    CrossRef Google Scholar

    [25] Gonçalves O G, Lana C, Scholz R, et al. An assessment of monazite from the Itambé pegmatite district for use as U-Pb isotope reference material for microanalysis and implications for the origin of the "Moacyr" monazite[J]. Chemical Geology, 2016, 424: 30-50. doi: 10.1016/j.chemgeo.2015.12.019

    CrossRef Google Scholar

    [26] Kylander-Clark A, Hacker B R, Cottle J M. Laser-ablation split-stream ICP petrochronology[J]. Chemical Geology, 2013, 345: 99-112. doi: 10.1016/j.chemgeo.2013.02.019

    CrossRef Google Scholar

    [27] Xue H M, Wang Y G, Ma F, et al. Zircon U-Pb SHRIMP ages of the Taiping (calc-alkaline)-Huangshan (alkaline) composite intrusion: Constraints on Mesozoic lithospheric thinning of the southeastern Yangtze Craton, China[J]. Science in China, 2009, 52(11): 1756-1770. doi: 10.1007/s11430-009-0133-9

    CrossRef Google Scholar

    [28] Wu F Y, Ji W Q, Sun D H, et al. Zircon U-Pb geo-chronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China[J]. Lithos, 2012, 150: 6-25. doi: 10.1016/j.lithos.2012.03.020

    CrossRef Google Scholar

    [29] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [30] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petroleum Science and Engineering, 2010, 51(1-2): 537-571.

    Google Scholar

    [31] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [32] 吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1): 1-36.

    Google Scholar

    Wu F Y, Liu Z C, Liu X C, et al. Himalayan leucogranite[J]. Acta Petrologica Sinica, 2015, 31(1): 1-36.

    Google Scholar

    [33] Susanne B, Felix O, Martin M. Th-Pb versus U-Pb isotope systematics in allanite from cogenetic rhyolite and granodiorite: Implications for geochronology[J]. Earth & Planetary Science Letters, 1994, 124(1-4): 149-159.

    Google Scholar

    [34] Grand'Homme A, Janots E, Bosse V, et al. Interpretation of U-Th-Pb in-situ ages of hydrothermal monazite-(Ce) and xenotime-(Y): Evidence from a large-scale regional study in clefts from the western Alps[J]. Mineralogy & Petrology, 2016, 110(6): 787-807. doi: 10.1007/s00710-016-0451-5

    CrossRef Google Scholar

    [35] 周红升, 马昌前, 张超, 等. 华北克拉通南缘泌阳春水燕山期铝质A型花岗岩类: 年代学、地球化学及其启示[J]. 岩石学报, 2008, 24(1): 49-64.

    Google Scholar

    Zhou H S, Ma C Q, Zhang C, et al. Yanshanian alnminons A-type granitoids in the Chunshui of Biyang, south margin of North China Craton: Implications from petrology, geochronology and geochemistry[J]. Acta Petrologica Sinica, 2008, 24(1): 49-64.

    Google Scholar

    [36] 张舒, 张招崇, 艾羽, 等. 安徽黄山花岗岩岩石学、矿物学及地球化学研究[J]. 岩石学报, 2009, 25(1): 25-38.

    Google Scholar

    Zhang S, Zhang Z C, Ai Y, et al. The petrology, mineralogy and geochemistry study of the Huangshan granite intrusion in Anhui Province[J]. Acta Petrologica Sinica, 2009, 25(1): 25-38.

    Google Scholar

    [37] 薛怀民, 汪应庚, 马芳, 等. 高度演化的黄山A型花岗岩: 对扬子克拉通东南部中生代岩石圈减薄的约束?[J]. 地质学报, 2009, 83(2): 247-259.

    Google Scholar

    Xue H M, Wang Y G, Ma F, et al. The Huangshan A-type granites with tetrad REE: Constraints on Mesozoic lithospheric thinning of the southeastern Yangtze Craton?[J]. Acta Geologica Sinica, 2009, 83(2): 247-259.

    Google Scholar

    [38] Belousova E, Griffin W, O'Reilly S Y, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy & Petrology, 2002, 143(5): 602-622.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(4)

Article Metrics

Article views(3201) PDF downloads(161) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint