2023 Vol. 42, No. 7
Article Contents

QIN Jinhua, WANG Denghong, WANG Chenghui, ZHAO Ruyi, LIU Shanbao. 2023. Ore and rock forming ages, geochemical, mineralogical characteristics of Shuikoushan ore field and its indicating significance for Pb-Zn polymetallic mineralization, Hunan Province. Geological Bulletin of China, 42(7): 1179-1202. doi: 10.12097/j.issn.1671-2552.2023.07.010
Citation: QIN Jinhua, WANG Denghong, WANG Chenghui, ZHAO Ruyi, LIU Shanbao. 2023. Ore and rock forming ages, geochemical, mineralogical characteristics of Shuikoushan ore field and its indicating significance for Pb-Zn polymetallic mineralization, Hunan Province. Geological Bulletin of China, 42(7): 1179-1202. doi: 10.12097/j.issn.1671-2552.2023.07.010

Ore and rock forming ages, geochemical, mineralogical characteristics of Shuikoushan ore field and its indicating significance for Pb-Zn polymetallic mineralization, Hunan Province

  • We reported systematic mineralogical, geochronological, geochemical and Sr-Nd isotopic data of granodiorite and dacite porphyry in Shuikoushan ore field.The EMPA analysis result shows that the biotite in granodiorite is magnesium-rich biotite and the plagioclase is main andesine, while the plagioclase in dacite porphyry is main oligoclase-albite.Zircon U-Pb age shows that the dacite porphyry was formed at 148.8±0.5 Ma, which is about 10 Ma later than the granodiorite.However, the in situ U-Pb age of garnet shows that the deep skarn of Kangjiawan deposit was formed at 159.1±1.9 Ma, which is much closer to the formation age of granodioritie.Geochemical characteristics shows that the magmatic rocks in Shuikoushan are enriched in Al, low in Si and high in K/Na ratio, and have the affinity of subalkaline and high K calc-alkaline to shoshonite series.They are enriched in Rb, Th, U and depleted in Ba, Nb, Sr, Ti, etc.Sr-Nd isotopic characteristics show that the(87Sr/86Sr)i ratios range from 0.70661 to 0.70801 and 0.71116 to 0.711156 for granodiorite and dacite porphyry, respectively.The calculated εNd(t)values range from-7.4~-2.4 and-7.1 to-8.63 for granodiorite and dacite porphyry, respectively.The TDM2 values of granodiorite range from 1.53 Ga to 1.15 Ga and of dacite porphyry are from 1.64 Ga to 1.53 Ga.It suggests that the granodiorite and dacite porphyry were derived from partial melting of Mesoproterozoic metamorphic basaltic tonalite diorite.They are formed at the different stages of magmatism and derived from distinct source regions.The evidence of formation ages, geochemical characteristics and mineralogical characteristics suggest the affinity between granodiorite and polymetallic mineralization.The Shuikoushan ore field was formed in the intracontinental extensional setting under the subduction background of paleo-Pacific plate at the late stage of early Yanshanian.

  • 加载中
  • [1] Blevin P L. Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: Implications for gold-rich oresystems[J]. Resource Geology, 2004, 54(3): 241-252. doi: 10.1111/j.1751-3928.2004.tb00205.x

    CrossRef Google Scholar

    [2] Carter A, Roques D, Bristow C, et al. Understanding Mesozoic accretion in Southeast Asia, significance of Triassic thermotectonism(Indosinian orogeny)in Vietnam[J]. Geology, 2001, 29: 211-214.

    Google Scholar

    [3] Chen J F, Jahn B M. Crustal evolution of Southeastern China: Nd and Sr isotopic evidence[J]. Tectonophysics, 1998, 284(1): 101-133.

    Google Scholar

    [4] Chen P, Hua R, Zhang B, et al. Early yanshanian post-orogenic granitoids in the nanlingregion[J]. Science in China. Series D, Earth Sciences, 2002, 45(8): 755-768.

    Google Scholar

    [5] Deng X D, Li J W, Shuster D L. Late mio-pliocene chemical weathering of the yulong porphyry Cu deposit in the eastern tibetan plateau constrained by goethite(U-Th)/He dating: implication for asian summermonsoon[J]. Earth & Planetary Science Letters, 2017, 472: 289-298.

    Google Scholar

    [6] Dickin A P, Muller R. Radiogenic isotopegeology[J]. Physics Today, 2005, 49(6): 60.

    Google Scholar

    [7] Gilder S A, Coe R S, Wu H R, et al. Triassic paleomagnetic data from south china and their bearing on the tectonic evolution of the western circum-pacific region[J]. Earth & Planetary Science Letters, 1995, 131(3): 269-287.

    Google Scholar

    [8] Huang J C, Peng J T, Yang J H, et al. Precise zircon U-Pb and molybdenite Re-Os dating of the Shuikoushan granodiorite-related Pb-Zn mineralization, southern Hunan, South China[J]. Ore Geology Reviews, 2015, 71(1): 305-317.

    Google Scholar

    [9] Ishihara S. The magnetite-series and ilmenite-series graniticrocks[J]. Mining Geology, 1977, 27: 293-305.

    Google Scholar

    [10] Li S B, Cao Y H, Song Z Y, et al. Zircon U-Pb and pyrite Re-Os isotope geochemistry of 'skarn-type' Fe-Cu mineralization at the Shuikoushan polymetallic deposit, South China: Implications for an Early Cretaceous mineralization event in the Nanling Range[J]. Minerals, 2021, 11(5): 480. doi: 10.3390/min11050480

    CrossRef Google Scholar

    [11] Li X H, Li Z X, Li W X, et al. Initiation of the indosinian orogeny in South China, Evidence for a permian magmatic arc on the Hainanisland[J]. Journal of Geology, 2006, 114: 341-353. doi: 10.1086/501222

    CrossRef Google Scholar

    [12] Li Y, Audétat A. Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt[J]. Geochimica Et Cosmochimica Acta, 2015, 162: 25-45. doi: 10.1016/j.gca.2015.04.036

    CrossRef Google Scholar

    [13] Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geologicalsamples[J]. Chinese Science Bulletin, 2013, 58(32): 3863-3878. doi: 10.1007/s11434-013-5901-4

    CrossRef Google Scholar

    [14] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinementofzircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55: 1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [15] Ludwig K R. Isoplot/Ex, a geochronological toolkit for Microsoft Excel, Version 3.00[M]. Berkeley Geochronology Center, 2003.

    Google Scholar

    [16] Mcarthur J M, Kennedy W J, Chen M, et al. Strontium isotope stratigraphy for late cretaceous time: direct numerical calibration of the sr isotope curve based on the us western interior[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1994, 108(1/2): 95-119.

    Google Scholar

    [17] Pcarce J A, Harris N B W, Tindle A U. Tracc element discrimination diagrams for the tectonic interpretation of uraniticrocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [18] Sun S S, McDonough W F. Chemical and systematics of oceanic basalts, Implication for mantle 682 composition and processes. Geological Society ofLondon[J]. Special Publication, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [19] Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia, new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

    CrossRef Google Scholar

    [20] Wiedenbeck M. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and reeanalyses[J]. Geostandards Newsletter, 1995, 9(1): 1-23.

    Google Scholar

    [21] Yang J H, Peng J T, Zheng Y F, et al. Petrogenesis of the Mesozoic Shuikoushan peraluminous Ⅰ-type granodioritic intrusion in Hunan Province, South China: Middle-lower crustal reworking in an extensional tectonicsetting[J]. Journal of Asian Earth Sciences, 2016, 123: 224-242. doi: 10.1016/j.jseaes.2016.04.008

    CrossRef Google Scholar

    [22] 陈江峰, 郭新生, 汤加富, 等. 中国东南地壳增长与Nd同位素模式年龄[J]. 南京大学学报: 自然科学版, 1999, (6): 649-658.

    Google Scholar

    [23] 陈培荣, 华仁民, 章邦桐, 等. 南岭燕山早期后造山花岗岩类: 岩石学制约和地球动力学背景[J]. 中国科学(D辑), 2002, 32(4): 279-279.

    Google Scholar

    [24] 公凡影. 湖南省康家湾铅锌金银矿床地质特征及矿床成因探讨[D]. 中国地质大学(北京)硕士学位论文, 2012.

    Google Scholar

    [25] 郭娜欣, 吕晓强, 赵正, 等. 南岭地区中生代两种成矿花岗质岩的岩石学和矿物学特征探讨[J]. 地质学报, 2014, 88(12): 2423-2436.

    Google Scholar

    [26] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492.

    Google Scholar

    [27] 黄金川, 彭建堂, 阳杰华, 等. 湖南水口山花岗闪长岩的地球化学特征及成因[J]. 地球化学, 2015, 2: 131-144. doi: 10.3969/j.issn.1007-2802.2015.01.022

    CrossRef Google Scholar

    [28] 孔华, 全铁军, 奚小双, 等. 湖南宝山矿区煌斑岩的地球化学特征及地质意义[J]. 中国有色金属学报, 2013, 23(9): 12.

    Google Scholar

    [29] 李怀坤, 朱士兴, 相振群, 等. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束[J]. 岩石学报, 2010, 26(7): 2131-2140.

    Google Scholar

    [30] 李能强, 彭超. 湖南水口山铅锌金银矿床[M]. 北京: 地震出版社, 1996: 1-109.

    Google Scholar

    [31] 马丽艳, 路远发, 梅玉萍, 等. 湖南水口山矿区花岗闪长岩中的锆石SHRIMP U-Pb定年及其地质意义[J]. 岩石学报, 2006, 22(10): 53-60.

    Google Scholar

    [32] 毛景文, 陈懋弘, 袁顺达, 等. 华南地区钦杭成矿带地质特征和矿床时空分布规律[J]. 地质学报, 2011, 85(50): 636-658.

    Google Scholar

    [33] 毛景文, 谢桂青, 郭春丽, 等. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 2008, 23(10): 2329-2338.

    Google Scholar

    [34] 毛景文, 谢桂青, 李晓峰, 等. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J]. 地学前缘, 2004, 11(1): 45-55.

    Google Scholar

    [35] 毛景文, 张作衡, 余金杰, 等. 华北及邻区中生代大规模成矿的地球动力学背景: 从金属矿床年龄精测得到启示[J]. 中国科学(D辑), 2003, 33(4): 3-13.

    Google Scholar

    [36] 秦锦华, 王登红, 陈毓川, 等. 矿田尺度成矿规律与成矿系列研究——以湖南水口山为例[J]. 地质学报, 2020, 94(1): 255-269.

    Google Scholar

    [37] 屈金宝, 左昌虎, 左中勇, 等. 水口山矿田康家湾铅锌金矿成矿特征及找矿潜力[J]. 四川地质学报, 2015, 35(4): 501-504.

    Google Scholar

    [38] 舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31(7): 1035-1053.

    Google Scholar

    [39] 孙涛, 周新民, 陈培荣, 等. 南岭东段中生代强过铝花岗岩成因及其大地构造意义[J]. 中国科学(D辑), 2003, 33(12): 1209-1218.

    Google Scholar

    [40] 王岳军, 范蔚茗, 郭锋, 等. 湘东南中生代花岗闪长岩锆石U-Pb法定年及其成因指示[J]. 中国科学: 地球科学, 2001, 31(9): 745-751.

    Google Scholar

    [41] 向建华, 梁新权, 单业华, 等. 广东大宝山多金属矿床两期成矿: 来自黑色炭质泥岩和辉钼矿Re-Os同位素定年的证据[J]. 大地构造与成矿学, 2018, 42(4): 14.

    Google Scholar

    [42] 谢桂青. 中国东南部晚中生代以来的基性岩脉(体)的地质地球化学特征及其地球动力学意义初探——以江西省为例[D]. 中国科学院地球化学研究所博士学位论文, 2003.

    Google Scholar

    [43] 徐德明, 蔺志永, 骆学全, 等. 钦-杭成矿带主要金属矿床成矿系列[J]. 地学前缘, 2015, 22(2): 7-24.

    Google Scholar

    [44] 杨明桂, 黄水保, 楼法生, 等. 中国东南陆区岩石圈结构与大规模成矿作用[J]. 中国地质, 2009, 36(3): 528-543.

    Google Scholar

    [45] 姚军明, 华仁民, 屈文俊, 等. 湘南黄沙坪铅锌钨钼多金属矿床辉钼矿的Re-Os同位素定年及其意义[J]. 中国科学(D辑), 2007, 37(40): 471-477.

    Google Scholar

    [46] 喻亨祥, 刘家远. 水口山矿田花岗质潜火山杂岩的成因特征[J]. 大地构造与成矿学, 1997, (1): 32-40.

    Google Scholar

    [47] 左昌虎, 路睿, 赵增霞, 等. 湖南常宁水口山Pb-Zn矿区花岗闪长岩元素地球化学, LA-ICP-MS锆石U-Pb年龄和Hf同位素特征[J]. 地质论评, 2014, 60(4): 811-823.

    Google Scholar

    [48] 左昌虎, 缪柏虎, 赵增霞, 等. 湖南常宁康家湾铅锌矿床同位素地球化学研究[J]. 矿物学报, 2014, 34(3): 351-359.

    Google Scholar

    [49] 左昌虎. 湖南常宁康家湾铅锌矿床成因及与周边岩浆作用关系研究[D]. 南京大学博士学位论文, 2015.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(6)

Article Metrics

Article views(1127) PDF downloads(93) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint