Citation: | MA Yongfa, ZHOU Xuejun, ZHAN Tao, LIU Ling, WANG Xu, DONG Junling, LIU Yu, HE Lan, LIU Yan, LI Chang, SHI Zhenzhen. Genesis and resource assessment of Lindian geothermal field, Heilongjiang Province[J]. Geological Bulletin of China, 2022, 41(12): 2244-2255. doi: 10.12097/j.issn.1671-2552.2022.12.014 |
In order to establish the genesis model of Lindian geothermal field and accurately evaluate the potential of the geothermal resources, geological exploration including geological survey, geophysical exploration, geothermal drilling, geophysical logging and water level monitoring were employed. The results show that the main heat sources in Lindian geothermal field are mantle-derived heat, radioactive decay heat produced by basement granite and friction heat generated by deep faults. The geothermal reservoir is mainly composed of sandstones. The third and fourth members of the Quantou Formation, the Qingshankou Formation and Yaojia Formation of the Cretaceous are the main reservoirs. The burial depth of the main geothermal reservoir are ca.940 ~ 2062 m, and the accumulated thickness of the reservoir is ca.150 ~ 240 m. Three deep faults, namely Lindian fault, Lindian East fault and Western Boundary Fault of Heiyubao Sag are good channels for conduction of the deep heat to the upper strata. Furthermore, the Nenjiang Formation, the Sifangtai Formation and the Mingshui Formation overlaying the reservoir form a good thermal insulation caprock. According to calculation, the base resources of the Lindian geothermal field reaches 6.95×1019 J, whereas the volume of the geothermal fluid is 9.78×1010 m3, and the recoverable geothermal fluid is 9.84×107 m3/a, equaling to a capacity of 694.13 MW, which is equivalent to a large scale geothermal field. According to water level monitoring, withdrawal of the thermal water in Lindian town reached the maximum in 2017, and the water level dropped to the lowest point, which exceeded the maximum allowable withdrawal, thus reinjection is necessary. This research provides technical support for the exploration, exploitation and utilization planning and mining right setting of the Lindian geothermal field in the future.
[1] | 蔺文静, 刘志明, 王婉丽, 等. 中国地热资源及其潜力评估[J]. 中国地质, 2013, 40(1) : 312-320. doi: 10.3969/j.issn.1000-3657.2013.01.021 |
[2] | 赵振, 罗银飞, 孟梦, 等. 青海省地热资源概况及勘查开发利用部署初步研究[J]. 青海环境, 2013, 23(3) : 130-135. doi: 10.3969/j.issn.1007-2454.2013.03.006 |
[3] | 施尚明, 孙小洁, 于清华. 松辽盆地林甸地区地温场特征[J]. 大庆石油学院学报, 1998, 22(4) : 77-79, 102-103. |
[4] | 张树林, 施尚明, 郭升. 松辽盆地林甸地区热储水的补给及其水动力条件[J]. 大庆石油学院学报, 1998, 22(4) : 80-82. |
[5] | 刘妍. 对林甸地区地热资源的初步认识[J]. 油气井测试, 2003, 12(5) : 69-70. doi: 10.3969/j.issn.1004-4388.2003.05.026 |
[6] | 仝红伟, 陈正国, 孔登锋. 基于林甸地热田砂岩孔隙热储回灌的初步分析[J]. 黑龙江水利科技, 2011, 39(5) : 10-12. doi: 10.3969/j.issn.1007-7596.2011.05.006 |
[7] | 董俊领. 长青林场地热资源潜力评价[D]. 吉林大学硕士学位论文, 2013. |
[8] | 常立新. 黑龙江省林甸地热田形成条件及主要热储层资源量[J]. 内蒙古石油化工, 2015, (22) : 34-37. doi: 10.3969/j.issn.1006-7981.2015.22.015 |
[9] | 李永利, 于长生, 姜智超, 等. 松嫩盆地北部林甸地热田供暖尾水处理试验[J]. 水文地质工程地质, 2021, 48(1) : 188-194. |
[10] | Yang F T, Li D, Zhou X J, et al. Microbial Community Composition in Thermal Waters from the Lindian Geothermal Field(Songliao Basin, North-EasternChina) [J]. Water, 2022, 14: 632. doi: 10.3390/w14040632 |
[11] | 朱瑞杰, 周学军, 詹涛, 等. 黑龙江林甸地热田热水微生物多样性与群落结构分析[J/OL]. 中国地质. https://kns.cnki.net/kcms/detail/11.1167.P.20220413.1014.004.html. |
[12] | Yang F T, Zhu R J, Zhou X J, et al. Artificial neural network based prediction of reservoir temperature: A case study of Lindian geothermal field, Songliao Basin, NE China[J]. Geothermics, 2022, 106: 102547. |
[13] | 马永法, 周学军, 董俊领, 等. 黑龙江林甸地区深部咸水层CO2地质储存条件与潜力评估[J]. 水文地质工程地质, 2022, 49(6) : 179-189. |
[14] | 大庆油田石油地质志编写组. 中国石油地质志(卷二), 大庆、吉林油田(上册) [M]. 北京: 石油工业出版社, 1987. |
[15] | 李四光. 地质力学概论[M]. 北京: 科学出版社, 1973. |
[16] | 黄少鹏. 中国大陆地区大地热流和地壳厚度的变化[J]. 地球物理学报, 1992, 35(4) : 441-450. |
[17] | 高瑞祺, 蔡希源. 松辽盆地油气田形成与分布规律[M]. 北京: 石油工业出版社, 1997. |
[18] | 徐世光, 郭远生. 地热学基础[M]. 北京: 科学出版社, 2009. |
[19] | 柯柏林. 北京市平原区北部孙河断裂的地热地质特征[J]. 现代地质, 2009, 23(1) : 43-48. |
[20] | 段启杉, 宋小庆, 孟凡涛. 贵州东部变质岩区地热水赋存规律研究[J]. 地下水, 2015, 37(4) : 37-39. |
[21] | 王永波, 丁文萍, 田月, 等. 河北牛驼镇地热田高温地热水成因分析[J]. 城市地质, 2016, 11(3) : 59-64. |
[22] | 安百州, 曾昭发, 闫照涛, 等. 鄂尔多斯盆地西缘热储构造模式及地热资源分布特征[J]. 吉林大学学报(地球科学版), 2022, 52(4) : 1286-1301. |
[23] | 汪集旸. 中低温对流型地热系统[M]. 北京: 科学出版社, 1993. |
[24] | 汪在君. 松辽盆地北部的地热资源及其开发利用方向[J]. 自然资源学报, 2003, 18(1) : 8-10. |
[25] | 宾德智, 刘延忠, 郑克棪, 等. 地热资源地质勘查规范(GB/T 11615—2010) [S]. 北京: 中国标准出版社, 2011. |
① | 石义强, 张梅桂, 王强, 等. 黑龙江省林甸县林甸镇地热资源详查报告. 黑龙江省第二水文地质工程地质勘察院, 2000. |
② | 隋学文, 刘玉, 时影达. 黑龙江省林甸县地热资源勘探报告. 黑龙江省第二水文地质工程地质勘察院, 2010. |
③ | 孙梓耀, 李博, 杜永晶, 等. 黑龙江省林甸县巨浪牧场地热资源预可行性勘查报告. 黑龙江省地质调查研究总院, 2013. |
④ | 周学军, 詹涛, 史珍珍, 等. 林甸县地热资源调查报告. 黑龙江省第二水文地质工程地质勘察院, 2017. |
⑤ | 大庆市地热研究课题组. 大庆市林甸地区地热资源特征及地热资源评价研究. 大庆石油学院, 大庆市地热开发办, 1998. |
Regional geological map of Lindian geothermal field
Distribution of the main faults in Lindian geothermal field
Contour map of burial depth of Moho surface and Curie isothermal surface in Lindian geothermal field
Distribution of magmatic and metamorphic rocks in Lindian geothermal field
Contour map of 2000 m geo-temperature in Lindian geothermal field
Contour map of 1000 m geo-temperature in Lindian geothermal field
Genesis model of Lindian geothermal field
Dynamic variation characteristics of thermal fluid water level in Lindian geothermal field