2022 Vol. 41, No. 12
Article Contents

KONG Lingyao, YANG Cheng, LI Linjing, ZHOU Feng, GUO Pan, CHEN Chao. Zircon U-Pb age of Wudang Group: implication to the breakup model of North Yangtze Block during the Early Neoproterozoic[J]. Geological Bulletin of China, 2022, 41(12): 2224-2243. doi: 10.12097/j.issn.1671-2552.2022.12.013
Citation: KONG Lingyao, YANG Cheng, LI Linjing, ZHOU Feng, GUO Pan, CHEN Chao. Zircon U-Pb age of Wudang Group: implication to the breakup model of North Yangtze Block during the Early Neoproterozoic[J]. Geological Bulletin of China, 2022, 41(12): 2224-2243. doi: 10.12097/j.issn.1671-2552.2022.12.013

Zircon U-Pb age of Wudang Group: implication to the breakup model of North Yangtze Block during the Early Neoproterozoic

  • The Wudang Group exposed in the northern margin of Yangtze Block is one of the most important basement of South Qinling Orogen, and it records the oldest provenance information of South Qinling Orogen. In order to explore the stratigraphic sequence of Wudang Group and rift evolution model of Nanhua period in the northern margin of Yangtze Block, we dated the zircon U-Pb age of clasolite and volcanics from typical geological sections of Wudang Group in Suizhou area, and determined the sedimentary sequence of Wudang Group. Combined with the chronological information of Wudang Group in Suizhou and Wudang area from previous researches, we find that the stratigraphic age of Wudang Group in Wudang area is older about 30 Ma than the ages in Suizhou area, which shows that the rift during Neoproterozoic may be cracking gradually like a "scissor" from west to east in the northern margin of Yangtze Block. The main age peaks of detrital zircons from Wudang Group is about 722 Ma, 759 Ma, 820 Ma, 2014 Ma and 2445 Ma, which has a good correlation with main age peaks of detrital zircons from Yangtze Block, suggesting that the main provenance of Wudang Group is coming from the Yangtze Block. The age peak of 2014 Ma shows there may be provenance information from Tongbai-Dabie area, and the age peak about 722~759 Ma represents the strongest period of breaking up in the northern margin of Yangtze Block, whick may be the embodiment of the Rodinia supercontinent break-up in the northern margin of Yangtze Block.

  • 加载中
  • [1] 凌文黎, 程建萍, 王歆华, 等. 武当地区新元古代岩浆岩地球化学特征及其对南秦岭晋宁期区域构造性质的指示[J]. 岩石学报, 2002, 18(1) : 25-36.

    Google Scholar

    [2] 凌文黎, 任邦方, 段瑞春, 等. 南秦岭武当山群、耀岭河群及基性侵入岩群锆石U-Pb同位素年代学及其地质意义[J]. 科学通报, 2007, (12) : 1445-1456. doi: 10.3321/j.issn:0023-074X.2007.12.015

    CrossRef Google Scholar

    [3] 凌文黎, 段瑞春, 柳小明, 等. 南秦岭武当山群碎屑锆石U-Pb年代学及其地质意义[J]. 科学通报, 2010, 55(12) : 1153-1161.

    Google Scholar

    [4] 蔡志勇, 罗洪, 熊小林, 等. 武当群上部变沉积岩组时代归属问题: 单锆石U-Pb年龄的制约[J]. 地层学杂志, 2006, (1) : 60-63. doi: 10.3969/j.issn.0253-4959.2006.01.009

    CrossRef Google Scholar

    [5] 李福林, 李益龙, 周国华, 等. 湖北随州大狼山群片岩中碎屑锆石的U-Pb年龄及其意义[J]. 岩石矿物学杂志, 2010, 29(5) : 488-496.

    Google Scholar

    [6] 薛怀民. 扬子克拉通北缘随(州) —枣(阳) 地区新元古代变质岩浆岩的地球化学和SHRIMP锆石U-Pb年代学研究[J]. 岩石学报, 2011, 27(4) : 1116-1130.

    Google Scholar

    [7] 薛怀民, 马芳. 桐柏山造山带南麓随州群变沉积岩中碎屑锆石的年代学及其地质意义[J]. 岩石学报, 2013, 29(2) : 564-580.

    Google Scholar

    [8] 张永清, 张健, 李怀坤, 等. 南秦岭武当山群变质酸性火山岩锆石U-Pb年代学[J]. 地质学报, 2013, 87(7) : 922-930. doi: 10.3969/j.issn.0001-5717.2013.07.002

    CrossRef Google Scholar

    [9] Yang Z N, Yang K G, Xu Y, et al. Zircon U-Pb geochronology, Hf isotopic composition, and geological implications of the Neoproterozoic meta-sedimentary rocks in Suizhou-Zaoyang area, the northern Yangtze Block[J]. Science China-Earth Sciences, 2015, (11) : 1910-1923.

    Google Scholar

    [10] Wang R R, Xu Z Q, M. Santosh, et al. Middle Neoproterozoic (ca. 705-716 Ma) arc to rift transitional magmatism in the northern margin of the Yangtze Block: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes[J]. Journal of Geodynamics, 2017, 109: 59-74. doi: 10.1016/j.jog.2017.07.003

    CrossRef Google Scholar

    [11] 湖北省地质调查院. 中国区域地质志·湖北志[M]. 北京: 地质出版社, 2021.

    Google Scholar

    [12] 陈公信, 金经纬. 湖北省岩石地层[M]. 武汉: 中国地质大学出版社, 1996.

    Google Scholar

    [13] 李雄伟, 汪国虎. 随南地区武当岩群地层层序[J]. 湖北地矿, 2000, (1) : 3-11.

    Google Scholar

    [14] 王宗和. 鄂西北武当山群的划分与对比[J]. 湖北地质, 1989, 3(1) : 17-29.

    Google Scholar

    [15] 陈晋镳. 武当山群研究进展[J]. 地质科技通报, 1991, 10: 83-84.

    Google Scholar

    [16] 周高, 康维国, 等. 卾北蓝片岩带研究[M]. 北京: 地质出版社, 1991.

    Google Scholar

    [17] 周亮亮, 魏均启, 王芳, 等. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用[J]. 岩矿测试, 2017, 36(4) : 350-359.

    Google Scholar

    [18] Ludwig K R. User's Manual for ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003.

    Google Scholar

    [19] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [20] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51: 537-571.

    Google Scholar

    [21] Liu Y S, Hu Z C, Zong K Q, et al. . Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Sci. Bulletin, 2010, 55: 1535-1546.

    Google Scholar

    [22] 郑永飞, 张少兵. 华南前寒武纪大陆地壳的形成和演化[J]. 科学通报, 2007, 52(1) : 1-10.

    Google Scholar

    [23] Yang Y N, Wang X C, Li Q L, et al. Integrated in situ U-Pb age and Hf-O analyses of zircon from Suixian Group in northern Yangtze: New insights into the Neoproterozoic low-δ18O magmas in the South China Block[J]. Precambrian Research, 2016, 273(2016) : 151-164.

    Google Scholar

    [24] Wang L, Griffin W L, Yu J, et al. U-Pb and Lu-Hf isotopes in detrital zircon from Neoproterozoic sedimentary rocks in the northern Yangtze Block: Implications for Precambrian crustal evolution[J]. Gondwana Research, 2013, 23(4) : 1261-1272.

    Google Scholar

    [25] 罗郧, 李金发. 武当地块耀岭河群中两类不同性质的酸性火山岩研究[J]. 大地构造与成矿学, 2010, 34(1) : 125-132.

    Google Scholar

    [26] 邱啸飞, 江拓, 卢山松. 南秦岭随州地区晚新元古代耀岭河群双峰式火山岩的确认及其地质意义[C]//中国矿物岩石地球化学学会第17届学术年会论文摘要集, 2019.

    Google Scholar

    [27] 李怀坤, 陆松年, 陈志宏, 等. 南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学[J]. 地质通报, 2003, 22(10) : 775-781.

    Google Scholar

    [28] 夏林圻, 夏祖春, 李向民, 等. 南秦岭东段耀岭河群、陨西群、武当山群火山岩和基性岩墙群岩石成因[J]. 西北地质, 2008, (3) : 1-29.

    Google Scholar

    [29] 祝禧艳, 陈福坤, 王伟, 等. 豫西地区秦岭造山带武当群火山岩和沉积岩锆石U-Pb年龄[J]. 地球学报, 2008, 29(6) : 817-829.

    Google Scholar

    [30] 吴年文, 江拓, 徐琼, 等. 南秦岭随枣地块耀岭河组双峰式火山岩: 对扬子克拉通北缘大陆裂解过程的约束[J]. 地质通报, 2021, 40(6) : 920-929.

    Google Scholar

    [31] Tollo R P, Aleinikoff J N, Bartholomew M J, et al. Neoproterozoic A-type granitoids of the central and southern Appalachian: Intraplate magmatism associated with episodic rifting of the Rodinia supercontinent[J]. Precambrian Res., 2004, 128: 3-38.

    Google Scholar

    [32] Xu Y, Du Y, Cawood P A, et al. Detrital zircon provenance of Upper Ordovician and Silurian strata in the northeastern Yangtze Block: Response to orogenesis in South China[J]. Sedimentary Geology, 2012, 267: 63-72.

    Google Scholar

    [33] Yan Y, Hu X, Lin G, et al. Sedimentary provenance of the Hengyang and Mayang basins, SE China, and implications for the Mesozoic topographic change in South China Craton: Evidence from detrital zircon geochronology[J]. Journal of Asian Earth Sciences, 2011, 41(6) : 494-503.

    Google Scholar

    [34] Yao J, Shu L, Santosh M, et al. Geochronology and Hf isotope of detrital zircons from Precambrian sequences in the eastern Jiangnan Orogen: Constraining the assembly of Yangtze and Cathaysia Blocks in South China[J]. Journal of Asian Earth Sciences, 2013, 74: 225-243.

    Google Scholar

    [35] Li H, Jia D, Wu L, et al. Detrital zircon provenance of the Lower Yangtze foreland basin deposits: constraints on the evolution of the early Palaeozoic Wuyi-Yunkai orogenic belt in South China[J]. Geological Magazine, 2013, 150(6) : 959-974.

    Google Scholar

    [36] Duan L, Meng Q, Wu G, et al. Detrital zircon evidence for the linkage of the South China block with Gondwanaland in early Palaeozoic time[J]. Geological Magazine, 2012, 149(6) : 1124-1131.

    Google Scholar

    [37] She Z, Ma C, Wan Y, et al. An Early Mesozoic transcontinental palaeoriver in South China: evidence from detrital zircon U-Pb geochronology and Hf isotopes[J]. Journal of the Geological Society, 2012, 169(3) : 353-362.

    Google Scholar

    [38] Wang W, Zhou M, Yan D, et al. Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao Group, southeastern Yangtze Block, South China[J]. Precambrian Research, 2012, 192: 107-124.

    Google Scholar

    [39] 彭松柏, 李昌年, M Kusky Timothy, 等. 鄂西黄陵背斜南部元古宙庙湾蛇绿岩的发现及其构造意义[J]. 地质通报, 2010, 29(1) : 8-20.

    Google Scholar

    [40] 胡正祥, 陈超, 毛新武, 等, 鄂北大洪山晋宁期岛弧火山岩和增生杂岩的厘定及地质意义[J]. 资源环境与工程, 2015, 29(6) : 757-766.

    Google Scholar

    [41] 胡正祥, 陈超, 毛新武, 等. 扬子北缘青白口系土门岩组岛弧火山-碎屑岩的定义及意义[J]. 地层学杂志, 2017, 41(3) : 304-317.

    Google Scholar

    [42] 谢纪海, 胡正祥, 毛新武, 等. 鄂北大洪山晋宁期MORB-like玄武岩的识别与洋内俯冲作用[J]. 中国地质, 2019, 46(6) : 1496-1511.

    Google Scholar

    [43] Peng S, Kusky T M, Jiang X F, et al. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: Implications for South China's amalgamation history with the Rodinian supercontinent[J]. Gondwana Research, 2012, 21(2/3) : 577-594.

    Google Scholar

    [44] Xu Y, Yang K G, Ali Polat, et al. The ~860 Ma mafic dikes and granitoids from the northern margin of the Yangtze Block, China: A record of oceanic subduction in the early Neoproterozoic[J]. Precambrian Research, 2016, 275: 310-331.

    Google Scholar

    [45] Han Q S, Peng S B, Kusky Timothy, et al. A Paleoproterozoic ophiolitic mélange, Yangtze craton, South China: Evidence for Paleoproterozoic suturing and microcontinent amalgamation[J]. Precambrian Research, 2017, 293: 13-38.

    Google Scholar

    [46] Han Q S, Peng S B, Polat Ali, et al. A ca. 2.1 Ga Andean-type margin built on metasomatized lithosphere in the northern Yangtze craton, China: Evidence from high-Mg basalts and andesites[J]. Precambrian Research, 2018, 309: 309-324.

    Google Scholar

    [47] 吴元保, 陈道公, 夏群科, 等. 大别山黄土岭麻粒岩锆石和共生矿物的微量元素分析及其地质意义[J]. 地球化学, 2004, 33(4) : 334-342.

    Google Scholar

    [48] 陈能松, 刘嵘, 孙敏, 等. 北大别黄土岭长英质麻粒岩的原岩、变质作用及源区热事件年龄的锆石LA-ICPMS U-Pb测年约束[J]. 地球科学—中国地质大学学报, 2006, 31(3) : 294-300.

    Google Scholar

    [49] 郭盼, 陈超, 吴波, 等. 西大别~2.0Ga变质花岗岩的发现及其Hf同位素特征[J]. 中国地质, 2021, 48(4) : 1267-1279.

    Google Scholar

    湖北地质矿产开发局. 中华人民共和国区域地质调查报告1∶5万安居镇幅、随州市幅、均川幅. 1999.

    Google Scholar

    湖北省地质调查院. 中华人民共和国区域地质调查报告1∶25万十堰市幅、襄樊市幅. 2008.

    Google Scholar

    湖北省地质调查院. 中华人民共和国区域地质调查报告1∶5万水坪幅、竹山县幅、蔡家坝幅、峪口幅. 2016.

    Google Scholar

    湖北省地质调查院. 中华人民共和国区域地质调查报告1∶5万长岗店幅. 均川幅、客店坡幅、古城畈幅、三阳店幅. 2019.

    Google Scholar

    赵军红. 南秦岭武当群火山-沉积岩地球化学及地质意义. 中国地质大学(武汉), 2018.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(648) PDF downloads(61) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint