2023 Vol. 39, No. 4
Article Contents

SHI Yu-Xiang, LIU Xi-Jun, LI Zheng-Lin, LIU Xiao, ZHAO Bing, QIN Xian-Zhu, ZHANG Yi-Chen, HUANG Wen-Min, SU Yue. 2023. Petrogenesis of Dahua Diabase in Western Guangxi and Its Indications for Regional Tectonic Evolution. South China Geology, 39(4): 617-629. doi: 10.3969/j.issn.2097-0013.2023.04.003
Citation: SHI Yu-Xiang, LIU Xi-Jun, LI Zheng-Lin, LIU Xiao, ZHAO Bing, QIN Xian-Zhu, ZHANG Yi-Chen, HUANG Wen-Min, SU Yue. 2023. Petrogenesis of Dahua Diabase in Western Guangxi and Its Indications for Regional Tectonic Evolution. South China Geology, 39(4): 617-629. doi: 10.3969/j.issn.2097-0013.2023.04.003

Petrogenesis of Dahua Diabase in Western Guangxi and Its Indications for Regional Tectonic Evolution

More Information
  • Corresponding author: LIU Xi-Jun  
  • There is a large number of layered and quasi-layered dolerite in the Dahua area of western Guangxi, and their petrogenesis is of great significance to the understanding of the regional tectonic evolution processes and the characteristics of the mantle source. In this paper, geochemical and Sr-Nd isotopic studies of Dahua dolerite show that the Dahua dolerite belongs to the alkaline basalt series, with high TiO2 content (2.00~3.82 wt.%) and Ti/Y ratios (860~1176) and generally has the content and characteristics of rare earth element and trace elements similar to those of the high-Ti/Y Emeishan basaltic serie, which may represent the eastward extension of the magmatism of the Emeishan mantle plume. However, compared with the Emeishan high Ti/Y basalts, the Dahua dolerite shows obvious depletion of high field strength elements Nb, Ta, Zr and Hf, and exhibits relatively high 87Sr/86Sr(t) values (0.710087~0.712849) and moderately lower εNd(t) values (-1.68~1.21)The data combined shows that the primary magmas of the Dahua dolerite have possibly originated from the material of Emeishan mantle plume, and the magma have subsequently mixed with the enriched lithospheric mantle material underlying the Yangtze block during its ascent. The Dahua dolerite is located in the middle of the Youjiang basin, far away from Ailaoshan-Majiang Suture Zone, and the Dahua dolerite and its surrounding areas do not reveal earlier or simultaneous subduction-related magmatic rocks. Therefore, the enriched lithospheric mantle involved in the Dahua dolerite may be formed by the modification of earlier tectono-thermal events.
  • 加载中
  • [1] 陈雪峰,刘希军,许继峰,时毓,李政林,梁琼丹,黄文龙,廖帅,吴伟男.2016.桂西那坡基性岩地球化学:峨眉山地幔柱与古特提斯俯冲相互作用的证据[J]. 大地构造与成矿学, 40(3): 531-548.

    Google Scholar

    [2] 杜远生,黄虎,杨江海,黄宏伟,陶平,黄志强,胡丽沙,谢春霞.2013.晚古生代-中三叠世右江盆地的格局和转换[J].地质论评,2013,59(1):1-11.

    Google Scholar

    [3] 胡肇荣.2010.扬子与华夏地块拼接时代的再研究[J].东华理工大学学报:自然科学版,33(2):139-142.

    Google Scholar

    [4] 黄文龙,刘希军,时毓,许继峰,廖帅,郭琳,吴伟男,李政林,梁琼丹.2015.桂西巴马极高Ti/Y 基性岩地球化学:来自峨眉山地幔柱高Ti母岩浆[J].地质通报,34(2-3):474-486.

    Google Scholar

    [5] 李政林, 刘希军, 肖文交, 鲍厚银, 时毓, 刘磊, 廖帅, 覃显著.2019.桂西南凭祥火山岩年代学、地球化学及Hf 同位素研究——对古特提斯洋最晚北向俯冲事件的启示[J].地质力学学报,25(5):932-946.

    Google Scholar

    [6] 梁细荣,韦刚健,李献华,刘颖.2003.利用MC-ICPMS 精确测定143Nd/144Nd和Sm/Nd比值[J].地球化学,32(1):91-96.

    Google Scholar

    [7] 刘寅,胡凯,韩善楚,孙泽航.2015.右江盆地构造和演化及对卡林型金矿床的控制作用[J].高校地质学报,21(1):1-14.

    Google Scholar

    [8] 秦建华,吴应林,颜仰基,朱忠发.1996.南盘江盆地海西—印支期沉积构造演化[J].地质学报,70(2):99-107.

    Google Scholar

    [9] 舒良树.2006.华南前泥盆纪构造演化:从华夏地块到加里东期造山带[J].高校地质学报,12(4):418-431.

    Google Scholar

    [10] 舒良树.2012.华南构造演化的基本特征[J].地质通报,31(7):1035-1053.

    Google Scholar

    [11] 宋昊,徐争启,倪师军,张成江,梁军,程发贵,唐纯勇.2015.广西摩天岭岩体对江南造山带西南段构造演化的响应:来自新元古代花岗岩锆石U-Pb 年代学证据[J].大地构造与成矿学,39(6):1156-1175.

    Google Scholar

    [12] 王敏,戴传固,陈建书,王雪华,马会珍.2016.贵州省梵净山区新元古代岩浆活动的年代学格架及其大地构造意义[J].中国地质,43(3):843-856.

    Google Scholar

    [13] 王永磊,王登红,张长青,侯可军,王成辉.2011.广西钦甲花岗岩体单颗粒锆石LA-ICP-MS U-Pb 定年及其地质意义[J].地质学报,85(4):475-481.

    Google Scholar

    [14] 韦刚健,梁细荣,李献华,刘颖.2002.MC-ICPMS 方法精确测定液体和固体样品的Sr同位素组成[J].地球化学,31(3):295-299.

    Google Scholar

    [15] 吴祥珂,梁国科,李玉坤,赵兵,蒋剑,尹庭旺.2023.桂西巴马基性岩锆石U-Pb 年龄和Hf 同位素特征:与峨眉山大火成岩省的成因联系[J].桂林理工大学学报,43(1):14-29.

    Google Scholar

    [16] 杨婧,王金荣,张旗,陈万峰,潘振杰,焦守涛,王淑华.2016.弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB 的对比[J].地球科学进展,31(1):66-77.

    Google Scholar

    [17] 张锦泉,蒋廷操.1994.右江三叠纪弧后盆地沉积特征及盆地演化[J].广西地质,7(2):1-14.

    Google Scholar

    [18] 张晓静,肖加飞.2014.桂西北玉凤、巴马晚二叠世辉绿岩年代学、地球化学特征及成因研究[J].矿物岩石地球化学通报,(2):163-176.

    Google Scholar

    [19] 赵兵,刘希军,李政林,时毓,招传,覃显著.2022.桂西马雄辉绿岩的Sr-Nd-Hf 同位素和铂族元素特征:对岩浆演化和硫化物成矿作用的启示[J]. 岩石学报,38(9):2848-2864.

    Google Scholar

    [20] 周继彬,李献华,葛文春,刘颖.2007.桂北元宝山地区超镁铁岩的年代、源区及其地质意义[J].地质科技情报,26(1):11-18.

    Google Scholar

    [21] Aldanmaz E, Pearce J A, Thirlwall M F, Mitchell J G. 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 102(1-2): 67-95.

    Google Scholar

    [22] Cai J X, Zhang K J. 2009. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic[J]. Tectonophysics, 467(1-4): 35-43.

    Google Scholar

    [23] Campbell I H. 2002. Implications of Nb/U, Th/U and Sm/Nd in plume magmas for the relationship between continental and oceanic crust formation and the development of the depleted mantle[J]. Geochimica et Cosmochimica Acta, 66(9): 1651-1661.

    Google Scholar

    [24] Carter A, Clift P D. 2008. Was the Indosinian orogeny a Triassic mountain building or a thermotectonic reactivation event?[J]. Comptes Rendus Geoscience, 340(2-3): 83-93.

    Google Scholar

    [25] Duan L, Meng Q R, Wu G L, Yang Z, Wang J Q, Zhan R R. 2020. Nanpanjiang basin: A window on the tectonic development of south China during Triassic assembly of the southeastern and eastern Asia[J]. Gondwana Research, 78: 189-209.

    Google Scholar

    [26] Fan W M, Zhang C H, Wang Y J, Guo F, Peng T P. 2008. Geochronology and geochemistry of Permian basalts in western Guangxi Province, Southwest China: evidence for plume-lithosphere interaction [J]. Lithos, 102, 218-236.

    Google Scholar

    [27] Faure M, Lepvrier C, Nguyen V V, Vu T V, Lin W, Chen Z C. 2014. The South China block-Indochina collision: Where, when, and how?[J]. Journal of Asian Earth Sciences, 79(5): 260-274.

    Google Scholar

    [28] Hart S R. 1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies[J]. Earth and Planetary Science Letters, 90(3):273-296.

    Google Scholar

    [29] Jian P, Liu D, Kröner A, Zhang Q,Wang Y Z, Sun X M, Zhang W. 2009. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province[J]. Lithos, 113(3-4): 767-784.

    Google Scholar

    [30] Lai S C, Qin J F, Li Y F, Santosh M. 2012. Permian high Ti/Y basalts from the eastern part of the Emeishan Large Igneous Province, southwestern China: Petrogenesis and tectonic implications [J]. Journal of Asian Earth Science, 47(30): 216-230.

    Google Scholar

    [31] Li J H, Zhao G C, Johnston S T, Dong S W, Zhang Y Q, Xin Y J, Wang W B, Sun H S, Yu Y Q. 2017. Permo-Triassic structural evolution of the Shiwandashan and Youjiang structural belts, South China[J]. Journal of Structural Geology, 100: 24-44.

    Google Scholar

    [32] Li X H, Li Z X, Wingate M T D, Chung S L, Liu Y, Lin G C, Li W X. 2006. Geochemistry of the 755 Ma Mundine Well dyke swarm, northwestern Australia: Part of a Neoproterozoic mantle superplume beneath Rodinia?[J]. Precambrian Research, 146(1-2): 1-15.

    Google Scholar

    [33] Li X H, Zhou, H W, Chung S L, Lo C H, Wei G J, Liu Y, Lee C Y. 2002. Geochemical and Sr-Nd isotopic characteristics of late Paleogene ultrapotassic magmatism in southeastern Tibet[J]. International Geology Review, 44(6): 559-574.

    Google Scholar

    [34] Liu X J, Liang Q D, Li Z L, Castillo P R, Shi Y, Xu J F, Huang X L, Liao S, Huang W M, Wu W N. 2017. Origin of Permian extremely high Ti/Y mafic lavas and dykes from Western Guangxi, SW China: Implications for the Emeishan mantle plume magmatism[J]. Journal of Asian Earth Sciences, 141(15): 97-111.

    Google Scholar

    [35] McKenzie D A N, O'nions R K. 1995. The source regions of oceanislandbasalts[J].Journalof Petrology,36(1):133-159.

    Google Scholar

    [36] Pang C J, Wang X C, Li C F, Wilde S A, Tian L Y. 2019. Pyroxenite-derived Cenozoic basaltic magmatism in central Inner Mongolia, eastern China: Potential contributions from the subduction of the Paleo-Pacific and Paleo-Asian oceanic slabs in the Mantle Transition Zone[J]. Lithos, 332: 39-54.

    Google Scholar

    [37] Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 69(1): 33-47.

    Google Scholar

    [38] Pearce J A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search forArchean oceanic crust[J]. Lithos, 100(1-4): 14-48.

    Google Scholar

    [39] Ren Z Y, Wu Y D, Zhang L, Nichols A R L, Hong L B, Zhang Y H, Zhang Y, Liu J Q, Xu Y G. 2017. Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions[J]. Geochimica et Cosmochimica Acta, 208(1): 63-85.

    Google Scholar

    [40] Sun S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society of London Special Publications, 42(1): 313-345.

    Google Scholar

    [41] Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C. 2000. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium[J]. Chemical Geology, 168(3-4): 279-281.

    Google Scholar

    [42] Thirlwall M F. 1991. Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis[J]. Chemical Geology(Isotope Geoscience Section), 94(2): 85-104.

    Google Scholar

    [43] Wang Y J, Fan W M, Sun M, Liang X Q, Zhang Y H, Peng T P. 2007. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: a case study in the Hunan Province[J]. Lithos, 96(3-4): 475-502.

    Google Scholar

    [44] Weaver B L. 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints[J]. Earth and Planetary Science Letters, 104(2-4):381-397.

    Google Scholar

    [45] White R, McKenzie D. 1989. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts[J]. Journal of Geophysical Research: Solid Earth, 94(B6): 7685-7729.

    Google Scholar

    [46] Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 20(4): 325-343.

    Google Scholar

    [47] Xiao L, Xu Y G, Mei H J, Zheng Y F, He B, Pirajno F. 2004. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: implications for plume-lithosphere interaction[J]. Earth and Planetary Science Letters, 228(3-4): 525-546.

    Google Scholar

    [48] Xu Y G, Chung S L, Jahn B M, Wu G Y. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China[J]. Lithos, 58(3-4): 145-168.

    Google Scholar

    [49] Zhong H, Campbell I H, Zhu W G, Allen C M, Hu R Z, Xie L W, He D F. 2011. Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province[J]. Geochimica et Cosmochimica Acta, 75(5): 1374-1395.

    Google Scholar

    [50] Zi J W, Cawood P A, Fan W M, Tohver E, Wang Y J, McCuaig T C, Peng T P. 2013. Late Permian-Triassic magmatic evolution in the Jinshajiang orogenic belt, SW China and implications for orogenic processes following closure of the Paleo-Tethys[J]. American Journal of Science, 313(2): 81-112.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(686) PDF downloads(109) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint