[1] |
代军治,陈荔湘,石小峰,王瑞廷,李褔让,郑崔勇.2014.陕西略阳煎茶岭镍矿床酸性侵入岩形成时代及成矿意义[J].地质学报,88(10):1861-1873.
Google Scholar
|
[2] |
杜晓东,邹和平,苏章歆,劳妙姬,陈诗艾,丁汝鑫.2013.广西大瑶山—大明山地区寒武纪砂岩-泥岩的地球化学特征及沉积-构造环境分析[J].中国地质,40(4):1112-1128.
Google Scholar
|
[3] |
广西地质调查研究院.2004.鹿寨县幅G49C004002 1:25 万区域地质调查报告[R].
Google Scholar
|
[4] |
广西壮族自治区地质矿产局.1985.广西壮族自治区区域地质志[M].北京:地质出版社,481-482.
Google Scholar
|
[5] |
广西壮族自治区地球物理勘察院.2017.广西金秀地区1∶5万头排、新圩、金秀县和夏宜幅矿产远景调查报告[R].
Google Scholar
|
[6] |
和敬海.2008.试论杏树台矿区五元素建造矿床的开发[J].化工矿产地质,(2):99-102.
Google Scholar
|
[7] |
贾小辉,王晓地,杨文强.2022.广西大瑶山地区大进早古生代高分异A型花岗岩的厘定及成因[J].地球科学与环境学报,44(2):171-190.
Google Scholar
|
[8] |
李德东,王玉往,石煜,黄行凯,陈伟民,王福.2018.内蒙古嘎仙镍钴矿区岩浆作用与成矿[J]. 矿床地质,37(5):893-916.
Google Scholar
|
[9] |
李欢,刘云华,李真,周赛芳,李兴,魏居珍.2016.广西大瑶山大进花岗岩岩体的年代学、地球化学特征及其地质意义[J].东华理工大学学报(自然科学版),39(1):29-37.
Google Scholar
|
[10] |
李静,董王仓,郭立宏,朱伟,陈艳,郑向光.2014.陕西煎茶岭镍矿床控矿因素及找矿标志[J].西北地质,47(3):54-61.
Google Scholar
|
[11] |
李振华,金玺,黄寅,张淑玲.2010.广西镍矿成因类型浅析[J].南方国土资源,(2):31-35.
Google Scholar
|
[12] |
潘家永,马东升,夏菲,陈少华,曹双林,郭国林,谢贵珍.2005.湘西北下寒武统镍-钼多金属富集层镍与钼的赋存状态[J].矿物学报,2005,(3):283-288.
Google Scholar
|
[13] |
邱正杰,范宏瑞,杨奎锋,李麟瀚.2023.中条山古元古代沉积岩容矿型铜钴矿床钴来源及富集过程[J].岩石学报,39(4):1019-1029.
Google Scholar
|
[14] |
石小峰,舒凯,冯力.2018.陕西煎茶岭地区金、镍、铁矿化类型与成矿作用及矿化成因[J].现代矿业,34(7):7-14.
Google Scholar
|
[15] |
苏本勋,秦克章,蒋少涌,曹明坚,张招崇,张宏罗,薛国强,周涛发,莫江平.2023.我国钴镍矿床的成矿规律、科学问题、勘查技术瓶颈与研究展望[J].岩石学报,39(4):968-980.
Google Scholar
|
[16] |
王玉往,陈伟民,李德东,石煜,王福,黄行凯,石明.2016.内蒙古嘎仙钴镍硫化物矿床的地质特征及成因探讨[J].矿产勘查,7(1):72-81.
Google Scholar
|
[17] |
熊松泉,康志强,冯佐海,庞崇进,方贵聪,张青伟,吴佳昌,蒋兴洲.2015.广西大瑶山地区大进岩体的锆石U-Pb 年龄、地球化学特征及其意义[J].桂林理工大学学报,35(4):736-746.
Google Scholar
|
[18] |
徐林刚,孙凯,闫浩,袁彭,付雪瑞.2022.黑色页岩容矿型Ni-Co 矿床: 研究进展与展望[J]. 岩石学报,38(10):3052-3066.
Google Scholar
|
[19] |
尹露,李杰,赵佩佩,李超,梁华英,许继峰.2015.一种新的适合富有机质沉积岩的Re-Os 同位素分析方法初探[J].地球化学,44(3):225-237.
Google Scholar
|
[20] |
游先军.2010.湘西下寒武统黑色岩系中的钼镍钒矿研究[D].中南大学博士学位论文.
Google Scholar
|
[21] |
于晓飞,公凡影,李永胜,张家瑞.2022.中国典型钴矿床地质特征及重点地区矿产资源预测[J].吉林大学学报(地球科学版),52(5):1377-1418.
Google Scholar
|
[22] |
张洪瑞,侯增谦,杨志明,宋玉财,刘英超,柴鹏.2020.钴矿床类型划分初探及其对特提斯钴矿带的指示意义[J].矿床地质,39(3):501-510.
Google Scholar
|
[23] |
张岳,颜丹平,赵非,李旭拓,邱亮,张翼西.2016.贵州开阳磷矿地区下寒武统牛蹄塘组地层层序及其As、Sb、Au、Ag 丰度异常与赋存状态研究[J]. 岩石学报,32(11):3252-3268.
Google Scholar
|
[24] |
赵俊兴,李光明,秦克章,唐冬梅.2019.富含钴矿床研究进展与问题分析[J].科学通报,64(24):2484-2500.
Google Scholar
|
[25] |
周云,李堃,于玉帅,赵武强,刘飞,黄啸坤.2023.广西金秀县龙华镍钴矿床成矿流体性质、来源及演化[J].华南地质,39(3):558-570.
Google Scholar
|
[26] |
Ahmed A H, Arai S, Ikenne M. 2009. Mineralogy and Paragenesis of the Co-Ni Arsenide Ores of Bou Azzer, Anti-Atlas, Morocco[J]. Economic Geology, 104(2):249-266.
Google Scholar
|
[27] |
Allin N C. 2019. Experimental investigation of the thermochemical reduction of arsenite and sulfate: low temperature hydrothermal copper, nickel, and cobalt arsenide and sulfide ore formation[D]. Montana Tech of The University of Montana, 1-63.
Google Scholar
|
[28] |
Anderson D L. 1983. Chemical composition of the mantle[J]. Journal of Geophysical Research: Solid Earth, 88(S1): B41-B52.
Google Scholar
|
[29] |
Armstrong J G, Parnell J, Bullock L A, Perez M, Boyce A J, Feldmann J. 2018. Tellurium, selenium and cobalt enrichment in Neoproterozoic black shales, Gwna Group, UK: Deep marine trace element enrichment during the Second Great Oxygenation Event[J]. Terra Nova, 30(3): 244-253.
Google Scholar
|
[30] |
Bagheri H, Moore F, Alderton D H M. 2007. Cu-Ni-Co-As (U) mineralization in the Anarak area of central Iran[J]. Journal of Asian Earth Sciences, 29(5-6): 651-665.
Google Scholar
|
[31] |
Bastin E S. 1939. The nickel-cobalt-native silver ore type[J]. Economic Geology, 34: 40-79.
Google Scholar
|
[32] |
Baumann L, Kuschka E, Seifert T. 2000. Lagerstätten des Erzgebirges[M]. Enke, Stuttgart, 303.
Google Scholar
|
[33] |
Bischoff J, Radtke A R, Rosenbauer R. 1981. Hydrothermal alteration of greywacke by brine and seawater: roles of alteration and chloride complexing on metal solubilization at 200 and 350° C[J]. Economic Geology, 76: 659-676.
Google Scholar
|
[34] |
Borovikov A A, Lebedev V I, Borisenko A S. 2008. Fluid regime of the formation of hydrothermal Ni-Co-As deposits and the involvement of ammonia in ore-forming process[A].//Russian Mineralogy Society: Proceedings of XIII International Conference on Thermobarogeochemistry and IVth APIFIS Symposium, 2: 16-18.
Google Scholar
|
[35] |
Bouabdellah M, Maacha L, Levresse G, Saddiqi O. 2016. The Bou Azzer Co-Ni-Fe-As (± Au ± Ag) district of Central Anti-Atlas (Morocco): A long-lived late Hercynian to Triassic magmatic-hydrothermal to low-sulphidation epithermal system[A].//Bouabdellah. Mineral Deposits of North Africa. Springer, Cham, Switzerland, 229-247.
Google Scholar
|
[36] |
Boyle R W, Jonasson I R. 1973. The geochemistry of arsenic and its use as an indicator element in geochemical prospecting[J]. Journal of Geochemical Exploration, 2(3):251-296.
Google Scholar
|
[37] |
Burisch M, Gerdes A, Walter B F, Neumann U, Fettel M, Markl G. 2017. Methane and the origin of five-element veins: mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald, SW Germany[J]. Ore Geology Reviews, 81: 42-60.
Google Scholar
|
[38] |
Dehaine Q, Tijsseling L T, Glass H J, Törmänen T, Butcher A R. 2021. Geometallurgy of cobalt ores: A review[J]. Minerals Engineering, 160: 106656.
Google Scholar
|
[39] |
En-Naciri A, Barbanson L, Touray J C. 1997. Brine inclusions from the Co-As (Au) Bou Azzer district, Anti-Atlas Mountains, Morocco[J]. Economic Geology, 92(3): 360-367.
Google Scholar
|
[40] |
Essarraj S, Boiron M C, Cathelineau M, Banks D A, Benharref M. 2005. Penetration of surface-evaporated brines into the Proterozoic basement and deposition of Co and Ag at Bou Azzer (Morocco): evidence from fluid inclusions[J]. Journal of African Earth Sciences. 41(1-2):25-39.
Google Scholar
|
[41] |
Fanlo I, Subías I, Gervilla F, Manuel J. 2006. Textures and compositional variability in gersdorffite from the Crescencia Ni-(Co-U) showing, Central Pyrenees, Spain: primary deposition or re-equilibration?[J]. The Canadian Mineralogist, 44(6): 1513-1528.
Google Scholar
|
[42] |
Franklin J, Kissin S, Smyk M, Scott S. 1986. Silver deposits associated with the Proterozoic rocks of the Thunder Bay district, Ontario[J]. Canadian Journal of Earth Sciences, 23(10): 1576-1591.
Google Scholar
|
[43] |
Gadd M G, Peter J M. 2017. Field observations, mineralogy and geochemistry of Middle Devonian Ni-Zn-Mo-PGE hyper-enriched black shale deposits, Yukon[R]. //Targeted Geoscience Initiative: 2017 report of activities, volume 1, Rogers N (ed.). Geological Survey of Canada, Open File 8358, 193-206.
Google Scholar
|
[44] |
Gonzalez-Alvarez I, Pirajno F, Kerrich R. 2013. Hydrothermal nickel deposits: Secular variation and diversity[J]. Ore Geology Reviews, 52: 1-3.
Google Scholar
|
[45] |
Greenwood P F, Brocks J J, Grice K, Schwark L, Jaraula C M B, Dick J M, Evans K A. 2013. Organic geochemistry and mineralogy. I. Characterisation of organic matter associated with metal deposits[J]. Ore Geology Reviews, 50: 1-27.
Google Scholar
|
[46] |
Halls C, Stumpfl E F. 1972. The five-element (Ag-Bi-Co-Ni-As) vein deposit-A critical appraisal of the geological environments in which it occurs and of the theories affecting its origin: Proceedings[A].//24th International Geological Congress, Montreal, Sec, 4: 540.
Google Scholar
|
[47] |
He M J, Liu X D, Lu X C, Zhang C, Wang R C. 2017. Structure, acidity, and metal complexing properties of oxythioarsenites in hydrothermal solutions[J]. Chemical Geology, 471: 131-140.
Google Scholar
|
[48] |
Huang W T, Wu J, Liang H Y, Chen X L, Zhang J, Ren L. 2020. Geology, Geochemistry and genesis of the Longhua low-temperature hydrothermal Ni-Co arsenide deposit in sedimentary rocks, Guangxi, South China[J]. Ore Geology Reviews, 120: 103393.
Google Scholar
|
[49] |
Ikenne M, Souhassou M, Saintilan N J, Karfal A, Hassani A E, Moundi Y, Ousbih M, Ezzghoudi M, Zouhir M, Maacha L. 2021. Cobalt-nickel-copper arsenide, sulfarsenide and sulfide mineralization in the Bou Azzer window, Anti-Atlas, Morocco: one century of multi-disciplinary and geological investigations, mineral exploration and mining[M]. Geological Society, London, Special Publications, 502.
Google Scholar
|
[50] |
Jiang J Y, Zhu Y F. 2017. Geology and geochemistry of the Jianchaling hydrothermal nickel deposit: T-pH-fO2-fS2 conditions and nickel precipitation mechanism[J]. Ore Geology Reviews, 91: 216-235.
Google Scholar
|
[51] |
Jiang S Y, Pi D H, Heubeck C, Frimmel H, Liu Y P, Deng H L, Ling H F, Yang J H. 2009. Early Cambrian ocean anoxia in south China[J]. Nature, 459(7248): E5-E6.
Google Scholar
|
[52] |
Kamenetsky V S, Lygin A V, Foster J G, Meffre S, Maas R, Kamenetsky M B, Goemann K, Beresford S W. 2016. A story of olivine from the McIvor Hill complex (Tasmania, Australia): Clues to the origin of the Avebury metasomatic Ni sulfide deposit[J]. American Mineralogist, 101(5-6): 1321-1331.
Google Scholar
|
[53] |
Keays R R, Jowitt S M. 2013. The Avebury Ni deposit, Tasmania: A case study of an unconventional nickel deposit[J]. Ore Geology Reviews, 52: 4-17.
Google Scholar
|
[54] |
Kissin S A. 1988. Nickel-cobalt-native silver (five-element) veins: A riftrelated ore type[A].//Kisvarsany G,Grant S. Proceedings Volume: North American Conference on Tectonic Control of Ore Deposits and the Vertical and Horizontal Extent of Ore Systems. University of Missouri-Rolla, 268-279.
Google Scholar
|
[55] |
Kissin S A. 1992. Five-element (Ni-Co-As-Ag-Bi) veins[J]. Geoscience Canada, 19: 113-124.
Google Scholar
|
[56] |
Kissin S A. 1993. The geochemistry of transport and deposition in the formation of five element (Ag-Ni-Co-As-Bi) veins: Proceedings Volume[A]. // Eight Quadrennial International Association on the Genesis of Ore Deposits Symposium, Schweizerbart'sche Verlagsbuchhandlung, 14.
Google Scholar
|
[57] |
Kontinen A, Hanski E. 2015. The Talvivaara black shale-hosted Ni-Zn-Cu-Co deposit in eastern Finland[A].// Maier W D, Lahtinen R, O’Brien H. Mineral Deposits of Finland[M]. Elsevier, 557-612.
Google Scholar
|
[58] |
Kreissl S, Gerdes A, Walter B, Neumann U, Wenzel T, Markl G. 2018. Reconstruction of a > 200 Ma multi-stage“five element” Bi-Co-Ni-Fe-As-S system in the Penninic Alps, Switzerland[J]. Ore Geology Reviews, 95: 746-788.
Google Scholar
|
[59] |
Lecomte A, Cathelineau M, Michels R, Peiffert C, Brouand M. 2017. Uranium mineralization in the Alum Shale Formation (Sweden): Evolution of a U-rich marine black shale from sedimentation to metamorphism[J]. Ore Geology Reviews, 88: 71-98.
Google Scholar
|
[60] |
Lehmann B, Nagler T F, Holland H D, Wille M, Mao J, Pan J, Ma D, Dulski P. 2007. Highly metalliferous carbonaceous shale and Early Cambrian seawater[J]. Geology, 35: 403-406.
Google Scholar
|
[61] |
Le Vaillant M, Barnes S J, Fiorentini M L, Miller J, McCuaig T C, Muccilli P. 2015. A hydrothermal Ni-As-PGE geochemical halo around the Miitel komatiite-hosted nickel sulfide deposit, Yilgarn Craton, Western Australia[J]. Economic Geology, 110(2): 505-530.
Google Scholar
|
[62] |
Le Vaillant M, Barnes S J, Fiorentini M L, Santaguida F, Tormanen T. 2016. Effects of hydrous alteration on the distribution of base metals and platinum group elements within the Kevitsa magmatic nickel sulphide deposit[J]. Ore Geology Reviews, 72: 128-148.
Google Scholar
|
[63] |
Li X F, Yu Y, Wang C Z. 2017. Caledonian granitoids in the Jinxiu area, Guangxi, South China: Implications for their tectonic setting[J]. Lithos, 272: 249-260.
Google Scholar
|
[64] |
Li Y H. 2000. A Compendium of Geochemistry: From Solar Nebula to the Human Brain[M]. Princeton: Princeton University Press, 274-277.
Google Scholar
|
[65] |
Liu W H, Borg S J, Testemale D, Etschmann B, Hazemann J L, Brugger J. 2011. Speciation and thermodynamic properties for cobalt chloride complexes in hydrothermal fluids at 35-440℃ and 600 bar: an in-situ XAS study[J]. Geochimica et Cosmochimica Acta, 75(5): 1227-1248.
Google Scholar
|
[66] |
Liu W H, Migdisov A, Williams-Jones A. 2012. The stability of aqueous nickel(II) chloride complexes in hydrothermal solutions: Results of UV-Visible spectroscopic experiments[J]. Geochimica et Cosmochimica Acta, 94: 276-290.
Google Scholar
|
[67] |
Liu X D, He M J, Lu X C, Wang R C. 2015. Structures and acidity constants of arsenite and thioarsenite species in hydrothermal solutions[J]. Chemical Geology, 411: 192-199.
Google Scholar
|
[68] |
López L, Echeveste H, Rios F J, Jovic S M, Schalamuk I B. 2022. Metallogenesis of Ni-Co-Fe-arsenide type mineralization in the Purísima-Rumicruz deposit, Jujuy, Argentina[J]. Journal of South American Earth Sciences, 117: 103869.
Google Scholar
|
[69] |
Mao J W, Lehmann B, Du A D, Zhang G D, Ma D S, Wang Y T, Zeng M G, Kerrich R. 2002. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of South China and its geologic significance[J]. Economic Geology, 97(5): 1051-1061.
Google Scholar
|
[70] |
Markl G, Burisch M, Neumann U. 2016. Natural fracking and the genesis of five- element veins[J]. Mineralium Deposita, 51(6): 703-712.
Google Scholar
|
[71] |
Marshall D D, Diamond L W, Skippen G B. 1993. Silver transport and deposition at Cobalt, Ontario, Canada; fluid inclusion evidence[J]. Economic Geology, 88: 837-854.
Google Scholar
|
[72] |
Marshall D, Watkinson D. 2000. The Cobalt mining district: Silver sources, transport and deposition[J]. Exploration and Mining Geology, 9(2): 81-90.
Google Scholar
|
[73] |
Mudd G M, Jowitt S M. 2022. The new century for nickel resources, reserves, and mining: Reassessing the sustainability of the devil’s metal[J]. Economic Geology, 117(8): 1961-1983.
Google Scholar
|
[74] |
Naumov G B, Motorina Z M, Naumov V B. 1971. Conditions of formation of carbonates in veins of the lead-cobalt-nickel-silver-uranium type (translation from Geokhimiya, 8: 938-948) [R]. Geochemistry International, 8: 590-598.
Google Scholar
|
[75] |
Ondrus P, Veselovsky F, Gabasova A, Drabek M, Dobes P, Hlousek J, Sejkora J. 2003. Ore-forming processes and mineral parageneses of the Jáchymov ore district[J]. Journal of GEOsciences, 48(3-4): 157-192.
Google Scholar
|
[76] |
Paikaray S. 2012. Environmental hazards of arsenic associated with black shales: a review on geochemistry, enrichment and leaching mechanism[J]. Reviews in Environmental Science and Bio/Technology, 11: 289-303.
Google Scholar
|
[77] |
Petruk W. 1968. Mineralogy and origin of the Silverfields silver deposit in the Cobalt area, Ontario[J]. Economic Geology, 63(5): 512-531.
Google Scholar
|
[78] |
Pirajno F. 2009. Hydrothermal Processes and Mineral Systems[M]. Springer, Berlin, Germany.
Google Scholar
|
[79] |
Reed M H. 1997. Hydrothermal alteration and its relationship to ore fluid composition[M]. Geochemistry of Hydrothermal Ore Deposits(3rd Edition),Wiley, 303-366.
Google Scholar
|
[80] |
Robinson B, Ohmoto H. 1973. Mineralogy, fluid inclusions, and stable isotopes of the Echo Bay U-Ni-Ag-Cu deposits, Northwest Territories, Canada[J]. Economic Geology, 68: 635-656.
Google Scholar
|
[81] |
Scharrer M, Kreissl S, Markl G. 2019.The mineralogical variability of hydrothermal native element-arsenide (five-element) associations and the role of physicochemical and kinetic factors concerning sulfur and arsenic[J]. Ore Geology Reviews, 113: 103025.
Google Scholar
|
[82] |
Smedley P L, Kinniburgh D G. 2002. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied geochemistry, 17(5): 517-568.
Google Scholar
|
[83] |
Tepper J H, Groffman A R, Crossey L J, Asmerom Y. 2001. Influence of seasonal redox variations on mobility of trace metals in a shallow alluvial aquifer, Jemez Mountains, NM[A]. // AGU Fall Meeting Abstracts, H51C-0340.
Google Scholar
|
[84] |
Testemale D, Pokrovski G S, Hazemann J L. 2011. Speciation of AsIII and AsV in hydrothermal fluids by in situ X-ray absorption spectroscopy[J]. European Journal of Mineralogy, 23(3): 379-390.
Google Scholar
|
[85] |
Tian Y, Etschmann B, Liu W H, Borg S, Mei Y, Testemale, O'Neill B, Rae N, Sherman D M, Ngothai Y, Johannessen B, Glover C, Brugger J. 2012. Speciation of nickel (II) chloride complexes in hydrothermal fluids: In situ XAS study[J]. Chemical Geology, 334: 345-363.
Google Scholar
|
[86] |
Xu L G, Lehmann B, Mao J W. 2013. Seawater contribution to polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China: evidence from Mo isotope, PGE, trace element, and REE geochemistry[J]. Ore Geology Reviews, 52: 66-84.
Google Scholar
|
[87] |
Zhang Z Y, Hou Z Q, Lv Q T, Zhang X W, Pan X F, Fan X K, Zhang Y Q, Wang C G, Lv Y J. 2023. Crustal architectural controls on critical metal ore systems in South China based on Hf isotopic mapping[J]. Geology, 51 (8):738-742.
Google Scholar
|