2023 Vol. 39, No. 4
Article Contents

YANG Qi-Di, HUANG Xiao-Kun, LI Kun, LIU Fei, ZHAOWu-Qiang, ZHOU Yun, DAI Ping-Yun. 2023. Ore Texture from Longhua Nickel-cobalt Deposit in Jinxiu, Guangxi: Implication for the Genesis of the Deposit. South China Geology, 39(4): 601-616. doi: 10.3969/j.issn.2097-0013.2023.04.002
Citation: YANG Qi-Di, HUANG Xiao-Kun, LI Kun, LIU Fei, ZHAOWu-Qiang, ZHOU Yun, DAI Ping-Yun. 2023. Ore Texture from Longhua Nickel-cobalt Deposit in Jinxiu, Guangxi: Implication for the Genesis of the Deposit. South China Geology, 39(4): 601-616. doi: 10.3969/j.issn.2097-0013.2023.04.002

Ore Texture from Longhua Nickel-cobalt Deposit in Jinxiu, Guangxi: Implication for the Genesis of the Deposit

More Information
  • Corresponding author: LI Kun  
  • Longhua nickel-cobalt mine in Jinxiu, Guangxi Province, was a newly discovered high-grade nickel-cobalt deposit in China in recent years,ore body of which is mainly controlled by the surrounding rocks and east-west fault, but the genesis is still highly controversial. Based on the first observation of the "fern-like zonal texture" which is common in five-element vein deposits, this paper compares and analyzes the critical aspects of source of metallogenic material, the source and nature of mineralization fluids, and the precipitation mechanism between the Longhua nickel-cobalt deposit and five-element vein deposits, and proposes that genetic type of the Longhua nickel-cobalt deposit may be a five-element vein deposit. The metallogenic material came from Cambrian strata, the mineralization fluid was dominated by basin brine and superimposed on meteoric water precipitation. The black carbonaceous mudstone-siltstone was the reducing barrier that triggered the precipitation of ore-forming materials, and the inflow of primary pyrite and CH4-containing reduc ing fluids was the direct factor leading to the sedimentation of nickeline and other relevant ore-forming materials. In particular, the formation of the symbolic "fern-like ring structure" may be the result of the slower thermochemical reduction of sulfate than arsenite in the fluids under specific pH conditions.
  • 加载中
  • [1] 代军治,陈荔湘,石小峰,王瑞廷,李褔让,郑崔勇.2014.陕西略阳煎茶岭镍矿床酸性侵入岩形成时代及成矿意义[J].地质学报,88(10):1861-1873.

    Google Scholar

    [2] 杜晓东,邹和平,苏章歆,劳妙姬,陈诗艾,丁汝鑫.2013.广西大瑶山—大明山地区寒武纪砂岩-泥岩的地球化学特征及沉积-构造环境分析[J].中国地质,40(4):1112-1128.

    Google Scholar

    [3] 广西地质调查研究院.2004.鹿寨县幅G49C004002 1:25 万区域地质调查报告[R].

    Google Scholar

    [4] 广西壮族自治区地质矿产局.1985.广西壮族自治区区域地质志[M].北京:地质出版社,481-482.

    Google Scholar

    [5] 广西壮族自治区地球物理勘察院.2017.广西金秀地区1∶5万头排、新圩、金秀县和夏宜幅矿产远景调查报告[R].

    Google Scholar

    [6] 和敬海.2008.试论杏树台矿区五元素建造矿床的开发[J].化工矿产地质,(2):99-102.

    Google Scholar

    [7] 贾小辉,王晓地,杨文强.2022.广西大瑶山地区大进早古生代高分异A型花岗岩的厘定及成因[J].地球科学与环境学报,44(2):171-190.

    Google Scholar

    [8] 李德东,王玉往,石煜,黄行凯,陈伟民,王福.2018.内蒙古嘎仙镍钴矿区岩浆作用与成矿[J]. 矿床地质,37(5):893-916.

    Google Scholar

    [9] 李欢,刘云华,李真,周赛芳,李兴,魏居珍.2016.广西大瑶山大进花岗岩岩体的年代学、地球化学特征及其地质意义[J].东华理工大学学报(自然科学版),39(1):29-37.

    Google Scholar

    [10] 李静,董王仓,郭立宏,朱伟,陈艳,郑向光.2014.陕西煎茶岭镍矿床控矿因素及找矿标志[J].西北地质,47(3):54-61.

    Google Scholar

    [11] 李振华,金玺,黄寅,张淑玲.2010.广西镍矿成因类型浅析[J].南方国土资源,(2):31-35.

    Google Scholar

    [12] 潘家永,马东升,夏菲,陈少华,曹双林,郭国林,谢贵珍.2005.湘西北下寒武统镍-钼多金属富集层镍与钼的赋存状态[J].矿物学报,2005,(3):283-288.

    Google Scholar

    [13] 邱正杰,范宏瑞,杨奎锋,李麟瀚.2023.中条山古元古代沉积岩容矿型铜钴矿床钴来源及富集过程[J].岩石学报,39(4):1019-1029.

    Google Scholar

    [14] 石小峰,舒凯,冯力.2018.陕西煎茶岭地区金、镍、铁矿化类型与成矿作用及矿化成因[J].现代矿业,34(7):7-14.

    Google Scholar

    [15] 苏本勋,秦克章,蒋少涌,曹明坚,张招崇,张宏罗,薛国强,周涛发,莫江平.2023.我国钴镍矿床的成矿规律、科学问题、勘查技术瓶颈与研究展望[J].岩石学报,39(4):968-980.

    Google Scholar

    [16] 王玉往,陈伟民,李德东,石煜,王福,黄行凯,石明.2016.内蒙古嘎仙钴镍硫化物矿床的地质特征及成因探讨[J].矿产勘查,7(1):72-81.

    Google Scholar

    [17] 熊松泉,康志强,冯佐海,庞崇进,方贵聪,张青伟,吴佳昌,蒋兴洲.2015.广西大瑶山地区大进岩体的锆石U-Pb 年龄、地球化学特征及其意义[J].桂林理工大学学报,35(4):736-746.

    Google Scholar

    [18] 徐林刚,孙凯,闫浩,袁彭,付雪瑞.2022.黑色页岩容矿型Ni-Co 矿床: 研究进展与展望[J]. 岩石学报,38(10):3052-3066.

    Google Scholar

    [19] 尹露,李杰,赵佩佩,李超,梁华英,许继峰.2015.一种新的适合富有机质沉积岩的Re-Os 同位素分析方法初探[J].地球化学,44(3):225-237.

    Google Scholar

    [20] 游先军.2010.湘西下寒武统黑色岩系中的钼镍钒矿研究[D].中南大学博士学位论文.

    Google Scholar

    [21] 于晓飞,公凡影,李永胜,张家瑞.2022.中国典型钴矿床地质特征及重点地区矿产资源预测[J].吉林大学学报(地球科学版),52(5):1377-1418.

    Google Scholar

    [22] 张洪瑞,侯增谦,杨志明,宋玉财,刘英超,柴鹏.2020.钴矿床类型划分初探及其对特提斯钴矿带的指示意义[J].矿床地质,39(3):501-510.

    Google Scholar

    [23] 张岳,颜丹平,赵非,李旭拓,邱亮,张翼西.2016.贵州开阳磷矿地区下寒武统牛蹄塘组地层层序及其As、Sb、Au、Ag 丰度异常与赋存状态研究[J]. 岩石学报,32(11):3252-3268.

    Google Scholar

    [24] 赵俊兴,李光明,秦克章,唐冬梅.2019.富含钴矿床研究进展与问题分析[J].科学通报,64(24):2484-2500.

    Google Scholar

    [25] 周云,李堃,于玉帅,赵武强,刘飞,黄啸坤.2023.广西金秀县龙华镍钴矿床成矿流体性质、来源及演化[J].华南地质,39(3):558-570.

    Google Scholar

    [26] Ahmed A H, Arai S, Ikenne M. 2009. Mineralogy and Paragenesis of the Co-Ni Arsenide Ores of Bou Azzer, Anti-Atlas, Morocco[J]. Economic Geology, 104(2):249-266.

    Google Scholar

    [27] Allin N C. 2019. Experimental investigation of the thermochemical reduction of arsenite and sulfate: low temperature hydrothermal copper, nickel, and cobalt arsenide and sulfide ore formation[D]. Montana Tech of The University of Montana, 1-63.

    Google Scholar

    [28] Anderson D L. 1983. Chemical composition of the mantle[J]. Journal of Geophysical Research: Solid Earth, 88(S1): B41-B52.

    Google Scholar

    [29] Armstrong J G, Parnell J, Bullock L A, Perez M, Boyce A J, Feldmann J. 2018. Tellurium, selenium and cobalt enrichment in Neoproterozoic black shales, Gwna Group, UK: Deep marine trace element enrichment during the Second Great Oxygenation Event[J]. Terra Nova, 30(3): 244-253.

    Google Scholar

    [30] Bagheri H, Moore F, Alderton D H M. 2007. Cu-Ni-Co-As (U) mineralization in the Anarak area of central Iran[J]. Journal of Asian Earth Sciences, 29(5-6): 651-665.

    Google Scholar

    [31] Bastin E S. 1939. The nickel-cobalt-native silver ore type[J]. Economic Geology, 34: 40-79.

    Google Scholar

    [32] Baumann L, Kuschka E, Seifert T. 2000. Lagerstätten des Erzgebirges[M]. Enke, Stuttgart, 303.

    Google Scholar

    [33] Bischoff J, Radtke A R, Rosenbauer R. 1981. Hydrothermal alteration of greywacke by brine and seawater: roles of alteration and chloride complexing on metal solubilization at 200 and 350° C[J]. Economic Geology, 76: 659-676.

    Google Scholar

    [34] Borovikov A A, Lebedev V I, Borisenko A S. 2008. Fluid regime of the formation of hydrothermal Ni-Co-As deposits and the involvement of ammonia in ore-forming process[A].//Russian Mineralogy Society: Proceedings of XIII International Conference on Thermobarogeochemistry and IVth APIFIS Symposium, 2: 16-18.

    Google Scholar

    [35] Bouabdellah M, Maacha L, Levresse G, Saddiqi O. 2016. The Bou Azzer Co-Ni-Fe-As (± Au ± Ag) district of Central Anti-Atlas (Morocco): A long-lived late Hercynian to Triassic magmatic-hydrothermal to low-sulphidation epithermal system[A].//Bouabdellah. Mineral Deposits of North Africa. Springer, Cham, Switzerland, 229-247.

    Google Scholar

    [36] Boyle R W, Jonasson I R. 1973. The geochemistry of arsenic and its use as an indicator element in geochemical prospecting[J]. Journal of Geochemical Exploration, 2(3):251-296.

    Google Scholar

    [37] Burisch M, Gerdes A, Walter B F, Neumann U, Fettel M, Markl G. 2017. Methane and the origin of five-element veins: mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald, SW Germany[J]. Ore Geology Reviews, 81: 42-60.

    Google Scholar

    [38] Dehaine Q, Tijsseling L T, Glass H J, Törmänen T, Butcher A R. 2021. Geometallurgy of cobalt ores: A review[J]. Minerals Engineering, 160: 106656.

    Google Scholar

    [39] En-Naciri A, Barbanson L, Touray J C. 1997. Brine inclusions from the Co-As (Au) Bou Azzer district, Anti-Atlas Mountains, Morocco[J]. Economic Geology, 92(3): 360-367.

    Google Scholar

    [40] Essarraj S, Boiron M C, Cathelineau M, Banks D A, Benharref M. 2005. Penetration of surface-evaporated brines into the Proterozoic basement and deposition of Co and Ag at Bou Azzer (Morocco): evidence from fluid inclusions[J]. Journal of African Earth Sciences. 41(1-2):25-39.

    Google Scholar

    [41] Fanlo I, Subías I, Gervilla F, Manuel J. 2006. Textures and compositional variability in gersdorffite from the Crescencia Ni-(Co-U) showing, Central Pyrenees, Spain: primary deposition or re-equilibration?[J]. The Canadian Mineralogist, 44(6): 1513-1528.

    Google Scholar

    [42] Franklin J, Kissin S, Smyk M, Scott S. 1986. Silver deposits associated with the Proterozoic rocks of the Thunder Bay district, Ontario[J]. Canadian Journal of Earth Sciences, 23(10): 1576-1591.

    Google Scholar

    [43] Gadd M G, Peter J M. 2017. Field observations, mineralogy and geochemistry of Middle Devonian Ni-Zn-Mo-PGE hyper-enriched black shale deposits, Yukon[R]. //Targeted Geoscience Initiative: 2017 report of activities, volume 1, Rogers N (ed.). Geological Survey of Canada, Open File 8358, 193-206.

    Google Scholar

    [44] Gonzalez-Alvarez I, Pirajno F, Kerrich R. 2013. Hydrothermal nickel deposits: Secular variation and diversity[J]. Ore Geology Reviews, 52: 1-3.

    Google Scholar

    [45] Greenwood P F, Brocks J J, Grice K, Schwark L, Jaraula C M B, Dick J M, Evans K A. 2013. Organic geochemistry and mineralogy. I. Characterisation of organic matter associated with metal deposits[J]. Ore Geology Reviews, 50: 1-27.

    Google Scholar

    [46] Halls C, Stumpfl E F. 1972. The five-element (Ag-Bi-Co-Ni-As) vein deposit-A critical appraisal of the geological environments in which it occurs and of the theories affecting its origin: Proceedings[A].//24th International Geological Congress, Montreal, Sec, 4: 540.

    Google Scholar

    [47] He M J, Liu X D, Lu X C, Zhang C, Wang R C. 2017. Structure, acidity, and metal complexing properties of oxythioarsenites in hydrothermal solutions[J]. Chemical Geology, 471: 131-140.

    Google Scholar

    [48] Huang W T, Wu J, Liang H Y, Chen X L, Zhang J, Ren L. 2020. Geology, Geochemistry and genesis of the Longhua low-temperature hydrothermal Ni-Co arsenide deposit in sedimentary rocks, Guangxi, South China[J]. Ore Geology Reviews, 120: 103393.

    Google Scholar

    [49] Ikenne M, Souhassou M, Saintilan N J, Karfal A, Hassani A E, Moundi Y, Ousbih M, Ezzghoudi M, Zouhir M, Maacha L. 2021. Cobalt-nickel-copper arsenide, sulfarsenide and sulfide mineralization in the Bou Azzer window, Anti-Atlas, Morocco: one century of multi-disciplinary and geological investigations, mineral exploration and mining[M]. Geological Society, London, Special Publications, 502.

    Google Scholar

    [50] Jiang J Y, Zhu Y F. 2017. Geology and geochemistry of the Jianchaling hydrothermal nickel deposit: T-pH-fO2-fS2 conditions and nickel precipitation mechanism[J]. Ore Geology Reviews, 91: 216-235.

    Google Scholar

    [51] Jiang S Y, Pi D H, Heubeck C, Frimmel H, Liu Y P, Deng H L, Ling H F, Yang J H. 2009. Early Cambrian ocean anoxia in south China[J]. Nature, 459(7248): E5-E6.

    Google Scholar

    [52] Kamenetsky V S, Lygin A V, Foster J G, Meffre S, Maas R, Kamenetsky M B, Goemann K, Beresford S W. 2016. A story of olivine from the McIvor Hill complex (Tasmania, Australia): Clues to the origin of the Avebury metasomatic Ni sulfide deposit[J]. American Mineralogist, 101(5-6): 1321-1331.

    Google Scholar

    [53] Keays R R, Jowitt S M. 2013. The Avebury Ni deposit, Tasmania: A case study of an unconventional nickel deposit[J]. Ore Geology Reviews, 52: 4-17.

    Google Scholar

    [54] Kissin S A. 1988. Nickel-cobalt-native silver (five-element) veins: A riftrelated ore type[A].//Kisvarsany G,Grant S. Proceedings Volume: North American Conference on Tectonic Control of Ore Deposits and the Vertical and Horizontal Extent of Ore Systems. University of Missouri-Rolla, 268-279.

    Google Scholar

    [55] Kissin S A. 1992. Five-element (Ni-Co-As-Ag-Bi) veins[J]. Geoscience Canada, 19: 113-124.

    Google Scholar

    [56] Kissin S A. 1993. The geochemistry of transport and deposition in the formation of five element (Ag-Ni-Co-As-Bi) veins: Proceedings Volume[A]. // Eight Quadrennial International Association on the Genesis of Ore Deposits Symposium, Schweizerbart'sche Verlagsbuchhandlung, 14.

    Google Scholar

    [57] Kontinen A, Hanski E. 2015. The Talvivaara black shale-hosted Ni-Zn-Cu-Co deposit in eastern Finland[A].// Maier W D, Lahtinen R, O’Brien H. Mineral Deposits of Finland[M]. Elsevier, 557-612.

    Google Scholar

    [58] Kreissl S, Gerdes A, Walter B, Neumann U, Wenzel T, Markl G. 2018. Reconstruction of a > 200 Ma multi-stage“five element” Bi-Co-Ni-Fe-As-S system in the Penninic Alps, Switzerland[J]. Ore Geology Reviews, 95: 746-788.

    Google Scholar

    [59] Lecomte A, Cathelineau M, Michels R, Peiffert C, Brouand M. 2017. Uranium mineralization in the Alum Shale Formation (Sweden): Evolution of a U-rich marine black shale from sedimentation to metamorphism[J]. Ore Geology Reviews, 88: 71-98.

    Google Scholar

    [60] Lehmann B, Nagler T F, Holland H D, Wille M, Mao J, Pan J, Ma D, Dulski P. 2007. Highly metalliferous carbonaceous shale and Early Cambrian seawater[J]. Geology, 35: 403-406.

    Google Scholar

    [61] Le Vaillant M, Barnes S J, Fiorentini M L, Miller J, McCuaig T C, Muccilli P. 2015. A hydrothermal Ni-As-PGE geochemical halo around the Miitel komatiite-hosted nickel sulfide deposit, Yilgarn Craton, Western Australia[J]. Economic Geology, 110(2): 505-530.

    Google Scholar

    [62] Le Vaillant M, Barnes S J, Fiorentini M L, Santaguida F, Tormanen T. 2016. Effects of hydrous alteration on the distribution of base metals and platinum group elements within the Kevitsa magmatic nickel sulphide deposit[J]. Ore Geology Reviews, 72: 128-148.

    Google Scholar

    [63] Li X F, Yu Y, Wang C Z. 2017. Caledonian granitoids in the Jinxiu area, Guangxi, South China: Implications for their tectonic setting[J]. Lithos, 272: 249-260.

    Google Scholar

    [64] Li Y H. 2000. A Compendium of Geochemistry: From Solar Nebula to the Human Brain[M]. Princeton: Princeton University Press, 274-277.

    Google Scholar

    [65] Liu W H, Borg S J, Testemale D, Etschmann B, Hazemann J L, Brugger J. 2011. Speciation and thermodynamic properties for cobalt chloride complexes in hydrothermal fluids at 35-440℃ and 600 bar: an in-situ XAS study[J]. Geochimica et Cosmochimica Acta, 75(5): 1227-1248.

    Google Scholar

    [66] Liu W H, Migdisov A, Williams-Jones A. 2012. The stability of aqueous nickel(II) chloride complexes in hydrothermal solutions: Results of UV-Visible spectroscopic experiments[J]. Geochimica et Cosmochimica Acta, 94: 276-290.

    Google Scholar

    [67] Liu X D, He M J, Lu X C, Wang R C. 2015. Structures and acidity constants of arsenite and thioarsenite species in hydrothermal solutions[J]. Chemical Geology, 411: 192-199.

    Google Scholar

    [68] López L, Echeveste H, Rios F J, Jovic S M, Schalamuk I B. 2022. Metallogenesis of Ni-Co-Fe-arsenide type mineralization in the Purísima-Rumicruz deposit, Jujuy, Argentina[J]. Journal of South American Earth Sciences, 117: 103869.

    Google Scholar

    [69] Mao J W, Lehmann B, Du A D, Zhang G D, Ma D S, Wang Y T, Zeng M G, Kerrich R. 2002. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of South China and its geologic significance[J]. Economic Geology, 97(5): 1051-1061.

    Google Scholar

    [70] Markl G, Burisch M, Neumann U. 2016. Natural fracking and the genesis of five- element veins[J]. Mineralium Deposita, 51(6): 703-712.

    Google Scholar

    [71] Marshall D D, Diamond L W, Skippen G B. 1993. Silver transport and deposition at Cobalt, Ontario, Canada; fluid inclusion evidence[J]. Economic Geology, 88: 837-854.

    Google Scholar

    [72] Marshall D, Watkinson D. 2000. The Cobalt mining district: Silver sources, transport and deposition[J]. Exploration and Mining Geology, 9(2): 81-90.

    Google Scholar

    [73] Mudd G M, Jowitt S M. 2022. The new century for nickel resources, reserves, and mining: Reassessing the sustainability of the devil’s metal[J]. Economic Geology, 117(8): 1961-1983.

    Google Scholar

    [74] Naumov G B, Motorina Z M, Naumov V B. 1971. Conditions of formation of carbonates in veins of the lead-cobalt-nickel-silver-uranium type (translation from Geokhimiya, 8: 938-948) [R]. Geochemistry International, 8: 590-598.

    Google Scholar

    [75] Ondrus P, Veselovsky F, Gabasova A, Drabek M, Dobes P, Hlousek J, Sejkora J. 2003. Ore-forming processes and mineral parageneses of the Jáchymov ore district[J]. Journal of GEOsciences, 48(3-4): 157-192.

    Google Scholar

    [76] Paikaray S. 2012. Environmental hazards of arsenic associated with black shales: a review on geochemistry, enrichment and leaching mechanism[J]. Reviews in Environmental Science and Bio/Technology, 11: 289-303.

    Google Scholar

    [77] Petruk W. 1968. Mineralogy and origin of the Silverfields silver deposit in the Cobalt area, Ontario[J]. Economic Geology, 63(5): 512-531.

    Google Scholar

    [78] Pirajno F. 2009. Hydrothermal Processes and Mineral Systems[M]. Springer, Berlin, Germany.

    Google Scholar

    [79] Reed M H. 1997. Hydrothermal alteration and its relationship to ore fluid composition[M]. Geochemistry of Hydrothermal Ore Deposits(3rd Edition),Wiley, 303-366.

    Google Scholar

    [80] Robinson B, Ohmoto H. 1973. Mineralogy, fluid inclusions, and stable isotopes of the Echo Bay U-Ni-Ag-Cu deposits, Northwest Territories, Canada[J]. Economic Geology, 68: 635-656.

    Google Scholar

    [81] Scharrer M, Kreissl S, Markl G. 2019.The mineralogical variability of hydrothermal native element-arsenide (five-element) associations and the role of physicochemical and kinetic factors concerning sulfur and arsenic[J]. Ore Geology Reviews, 113: 103025.

    Google Scholar

    [82] Smedley P L, Kinniburgh D G. 2002. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied geochemistry, 17(5): 517-568.

    Google Scholar

    [83] Tepper J H, Groffman A R, Crossey L J, Asmerom Y. 2001. Influence of seasonal redox variations on mobility of trace metals in a shallow alluvial aquifer, Jemez Mountains, NM[A]. // AGU Fall Meeting Abstracts, H51C-0340.

    Google Scholar

    [84] Testemale D, Pokrovski G S, Hazemann J L. 2011. Speciation of AsIII and AsV in hydrothermal fluids by in situ X-ray absorption spectroscopy[J]. European Journal of Mineralogy, 23(3): 379-390.

    Google Scholar

    [85] Tian Y, Etschmann B, Liu W H, Borg S, Mei Y, Testemale, O'Neill B, Rae N, Sherman D M, Ngothai Y, Johannessen B, Glover C, Brugger J. 2012. Speciation of nickel (II) chloride complexes in hydrothermal fluids: In situ XAS study[J]. Chemical Geology, 334: 345-363.

    Google Scholar

    [86] Xu L G, Lehmann B, Mao J W. 2013. Seawater contribution to polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China: evidence from Mo isotope, PGE, trace element, and REE geochemistry[J]. Ore Geology Reviews, 52: 66-84.

    Google Scholar

    [87] Zhang Z Y, Hou Z Q, Lv Q T, Zhang X W, Pan X F, Fan X K, Zhang Y Q, Wang C G, Lv Y J. 2023. Crustal architectural controls on critical metal ore systems in South China based on Hf isotopic mapping[J]. Geology, 51 (8):738-742.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1070) PDF downloads(109) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint