2022 Vol. 41, No. 4
Article Contents

LYU Hongbo, PU Jin, GAO Yu. Glacial potholes, meltwater channels, salt weathering tafoni and exfoliation on the granite surface in Zhaomiao, Chifeng, Inner Mongolia[J]. Geological Bulletin of China, 2022, 41(4): 517-532. doi: 10.12097/j.issn.1671-2552.2022.04.001
Citation: LYU Hongbo, PU Jin, GAO Yu. Glacial potholes, meltwater channels, salt weathering tafoni and exfoliation on the granite surface in Zhaomiao, Chifeng, Inner Mongolia[J]. Geological Bulletin of China, 2022, 41(4): 517-532. doi: 10.12097/j.issn.1671-2552.2022.04.001

Glacial potholes, meltwater channels, salt weathering tafoni and exfoliation on the granite surface in Zhaomiao, Chifeng, Inner Mongolia

  • A granite hill, about 20 km2 in area, is situated 20 km to the south of Lindong Town in the Bairin Left Banner, Chifeng, Inner Mongolia, China.The Yanshannian coarse granite is mainly composed of K-feldspar and quartz.The granite intrusive body has been cut by two sets of vertical joints and a set of exfoliation joints that undulate with topographic relief.The granite hill is about 300~400 m higher than the surrounding area.We investigated the following three mini-landforms, potholes, meltwater channels and salt weathering tafoni and analyzed their formation mechanisms.We also examined the exfoliation and its origin.Potholes on the granite ridge in this area had been reported as wind-erosion evidence by some researchers 20 years ago, or interpreted as a result of chemical weathering lately.However, they were not formed by wind or weathering, but by the fast erosion of melt water from the surface of ice sheet above.According to our explanation, there was a vast icesheet over the Greater Khingan Mountains and the vicinity area in the northeast of Asia in the Late Pleistocene.The thick icesheet tended to create fractures over the granite ridges because of its gravity and drained the melt water through these fractures and thus eroded the bedrock to form potholes on the ridges.Apart from forming potholes on the granite ridges, melt water mainly formed meltwater channels on the surface of the hillside.Meltwater channels are rows of closely spaced erosional notches or grooves on the hillside surface, extending from hilltop to the piedmont, scoured by high-pressure melt water between granite surface and the overlying icesheet.There are abundant tafoni, large and small, along the gently undulating exfoliation joints in this area.These tafoni had been treated as a result of wind erosion and called "wind-eroded habitacles" in the past decades.However, these concave structures are not wind-erosion landforms but typical salt weathering tafoni.Salt weathering is the granular fragmentation of rocks affected by the salt crystallization near/on the rock surface.Salt weathering pits are first initiated along the exfoliation joints and enlarged gradually year by year to form large tafoni.Exfoliation is a common mega-structure in Zhaomiao granite hills.The exfoliation joints are almost parallel to the ground surface, splitting the granite into curved plates.The origin of exfoliation has not been clear until recent years.The sheet joints can be treated as isothermal surfaces underground because of temperature changes induced by Quaternary glaciation.Thus the exfoliation joints reveal the history of Quaternary continental glaciation in the north of Chifeng and the adjacent area.In research area, the Zhaomiao granite hills, potholes and meltwater channels were formed during the later LGM (Last Glacial Maximum) more than 10 thousand years ago, and the landform framework had already been formed by the end of Pleistocene glaciation in the eastern China.Since then, salt weathering has been the major agent to shape the mini-landforms on the flanks of the granite hills.Wind erosion and rain scouring can also be some minor factors but negligible compared to salt weathering.

  • 加载中
  • [1] 吕洪波, 任晓辉, 杨超. 赤峰等地第四纪大陆冰川的地貌证据[J]. 地质论评, 2006, 52(3): 379-385. doi: 10.3321/j.issn:0371-5736.2006.03.020

    CrossRef Google Scholar

    [2] 吕洪波, 任晓辉, 许民, 等. 壶穴差异风化或风蚀作用成因质疑[J]. 地质论评, 2008, 54(2): 192-198. doi: 10.3321/j.issn:0371-5736.2008.02.006

    CrossRef Google Scholar

    [3] 吕洪波, 任晓辉, 许民, 等. 再论山脊壶穴的冰川融水成因——兼与施雅风院士商榷[J]. 地质论评, 2010, 56(5): 693-702.

    Google Scholar

    [4] Gary M, McAfee R J, Wolf C L. Glossary of Geology[M]. American Geological Institute, Washington, 1972: 1-805.

    Google Scholar

    [5] 《英汉综合地质学词汇》编写组. 英汉综合地质学词汇[M]. 北京: 科学出版社, 1970: 1-608.

    Google Scholar

    [6] 武汉地质学院外语教研室. 英汉常用地质学词汇[M]. 北京: 科学出版社, 1984: 1-340.

    Google Scholar

    [7] 《地理学词典》编写组. 地理学词典[M]. 上海: 上海辞书出版社, 1983: 1-804.

    Google Scholar

    [8] 周成虎(主编). 地貌学辞典[M]. 北京: 中国水利水电出版社, 2006: 1-303.

    Google Scholar

    [9] 韩同林, 郭克毅. 河北及内蒙古中低山区罕见的冰臼群[J]. 中国地质, 1998, 25 (6): 42-45.

    Google Scholar

    [10] 崔之久, 李洪江, 南凌, 等. 内蒙、河北巨型壶穴与赤峰风道的发现[J]. 科学通报, 1999, 44(13): 1429-1434。 doi: 10.3321/j.issn:0023-074X.1999.13.016

    CrossRef Google Scholar

    [11] 李洪江, 崔之久, 赵亮. 内蒙、河北山区壶穴的成因探讨——兼论壶穴的成因分类[J]. 地理学报, 2001, 56(2): 223-231. doi: 10.3321/j.issn:0375-5444.2001.02.011

    CrossRef Google Scholar

    [12] 周尚哲. 锅穴一定是第四纪冰川的标志吗?[J]. 第四纪研究, 2006, 26(1): 117-125. doi: 10.3321/j.issn:1001-7410.2006.01.015

    CrossRef Google Scholar

    [13] 孙洪艳, 田明中, 武法东. 克什克腾世界地质公园青山花岗岩臼的特征及成因研究[J]. 地质论评, 2007, 53(4): 486-490. doi: 10.3321/j.issn:0371-5736.2007.04.007

    CrossRef Google Scholar

    [14] 周旭, 田明中, 王璐琳. 内蒙古巴林左旗岩臼型花岗岩景观形成演化分析[J]. 干旱区资源与环境, 2014, 28(12): 166-171.

    Google Scholar

    [15] 吕洪波, 章雨旭. 壶穴、锅穴、冰臼、岩臼等术语的辨析与使用建议[J]. 地质通报, 2008, 27(6): 917-922. doi: 10.3969/j.issn.1671-2552.2008.06.022

    CrossRef Google Scholar

    [16] 吕洪波, 苏德辰, 章雨旭, 等. 中国不同气候带盐风化作用的地貌特征[J]. 地质论评, 2017, 63(4): 911-926.

    Google Scholar

    [17] Lu H B. An outline of Earth Sciences (second edition)[M]. Dongying: China University of Petroleum Press, 2006: 1-506.

    Google Scholar

    [18] 舒良树. 普通地质学(第三版)[M]. 北京: 地质出版社, 2010: 1-292.

    Google Scholar

    [19] 韩同林. 发现冰臼[M]. 北京: 华夏出版社, 2004: 1-190.

    Google Scholar

    [20] 赵国龙, 朱洪森, 李泊洋, 等. 论内蒙古第四纪冰川和冰臼群成因[J]. 中国区域地质, 2001, 20(2): 200-205. doi: 10.3969/j.issn.1671-2552.2001.02.014

    CrossRef Google Scholar

    [21] 章雨旭. "冰臼"成因争鸣——以克什克腾旗青山岩臼群为例[J]. 地质论评, 2005, 51(6): 680, 712.

    Google Scholar

    [22] 施雅风, 崔之久, 李吉均. 中国东部第四纪冰川与环境问题[M]. 北京: 科学出版社, 1989: 1-462.

    Google Scholar

    [23] 施雅风. 中国冰川与环境——现在、过去和未来[M]. 北京: 科学出版社, 2000: 1-410.

    Google Scholar

    [24] 施雅风. 韩同林的"冰臼论"是对花岗岩类岩石"负球状风化"的误解[J]. 地质论评, 2010, 56(3): 349-354.

    Google Scholar

    [25] 章雨旭, 刘恋. 山脊壶穴不能作为中国东部第四纪冰川的证据[J]. 科技导报, 2011, 29(33): 62-68. doi: 10.3981/j.issn.1000-7857.2011.33.009

    CrossRef Google Scholar

    [26] 吕洪波. 大兴安岭冰盖的证据和影响[EB/OL]. [2019-07-12](2021-05-04). http://blog.sciencenet.cn/home.php?mod=space&uid=39040&do=blog&id=1189267.2019.

    Google Scholar

    [27] Porreca C, Briner J P, Kozlowski A. Laurentide ice sheet meltwater routing along the Iro-Mohawk River, eastern New York, USA[J]. Geomorphology, 2018, 303: 155-161. doi: 10.1016/j.geomorph.2017.12.001

    CrossRef Google Scholar

    [28] Glasser N F, Hambrey M J. Subglacial meltwater channels at Thurstaston Hill, Wirral and their significance for Late Devensian ice sheet dynamics[J]. Procdddings of the Geologists' Association, 1998, 109: 139-148. doi: 10.1016/S0016-7878(98)80013-8

    CrossRef Google Scholar

    [29] Leviston D. Subglacial meltwater channels at Lymm Dam, Cheshire[J]. Proceedings of the Geologists' Association, 2001, 112: 147-154. doi: 10.1016/S0016-7878(01)80023-7

    CrossRef Google Scholar

    [30] 徐叔鹰. 论盐风化过程及其地貌意义[J]. 铁道师院学报(自然科学版), 1992, 9(3): 24-30.

    Google Scholar

    [31] 徐叔鹰. 干旱区盐风化过程的初步研究[J]. 干旱区地理, 1993, 16(2): 14-20.

    Google Scholar

    [32] 吕洪波. 红岩怪石——酒泉青稞地[J]. 科学通报, 2014, (1): 38-39.

    Google Scholar

    [33] Gilbert G K. Domes and dome structures of the high Sierra[J]. Geological Society of America Bulletin, 1904, 15(1): 29-36. doi: 10.1130/GSAB-15-29

    CrossRef Google Scholar

    [34] Bahat D, Grossenbacher K, Karasaki K. Mechanism of exfoliation joint formation in granitc rocks, Yosemite National Park[J]. Journal of Structural Geology, 1999, 21: 85-96. doi: 10.1016/S0191-8141(98)00069-8

    CrossRef Google Scholar

    [35] Mandl G. Rock joints—The mechanical genesis[M]. Springer-Verlag Berlin Heidelberg, 2005: 1-221.

    Google Scholar

    [36] Twidale C R. On the origin of sheet jointing[J]. Rock Mechanics, 1973, 5: 163-187. doi: 10.1007/BF01238046

    CrossRef Google Scholar

    [37] Vidal Romani J R, Twidale C R. Sheet fractures, other stress forms and some engineering implications[J]. Geomorphology, 1999, 31: 13-27. doi: 10.1016/S0169-555X(99)00070-7

    CrossRef Google Scholar

    [38] Vidal Romani J R, Twidale C R. Structural or climatic control in granite landforms? The development of sheet structure, foliation, boudinage, and related features[J]. Cadernos Lab. Xeoloxico de Laxe Coruna, 2010, 35: 189-208.

    Google Scholar

    [39] Bradley W C. Large-scale exfoliation in massive sandstones of the Colorado Plateau[J]. Geological Society of America Bulletin, 1963, 74: 519-528. doi: 10.1130/0016-7606(1963)74[519:LEIMSO]2.0.CO;2

    CrossRef Google Scholar

    [40] Harland W B. Exfoliation joints and ice action[J]. Journal of Glaciology, 1957, 3: 8-10. doi: 10.1017/S002214300002462X

    CrossRef Google Scholar

    [41] Huggett R J. Fundamentals of geomorphology (Second edition)[M]. Routledge New York, 2007: 1-458.

    Google Scholar

    [42] Migon P. Evolution of granite landscapes in the Sudetes (Central Europe): some problems of interpretation[J]. Proceedings of the Geologists' Association, 1996, 107: 25-37. doi: 10.1016/S0016-7878(96)80065-4

    CrossRef Google Scholar

    [43] Migon P. Granite landscapes of the world[M]. New York: Oxford University Press, 2006: 1-384.

    Google Scholar

    [44] Ziegler M, Loew S, andBahat D. Growth of exfoliation joints and near-surface stress orientations inferred from fractographic markings observed in the upper Aar valley (Swiss Alps)[J]. Tectonophysics, 2014, 626: 1-20. doi: 10.1016/j.tecto.2014.03.017

    CrossRef Google Scholar

    [45] Martel S J. Progress in understanding sheeting joints over the past two centuries[J]. Journal of Structural Geology, 2017, 94: 68-86. doi: 10.1016/j.jsg.2016.11.003

    CrossRef Google Scholar

    [46] Zak J, Vyhnalek B, Kabele P. Is there a relationship between magmatic fabrics and brittle fractures in plutons? A view based on structural analysis, anisotropy of magnetic susceptibility and thermo-mechanical modelling of the Tanvald pluton (Bohemian Massif)[J]. Physics of the Earth and Planetary Interriors, 2006, 157: 286-310. doi: 10.1016/j.pepi.2006.05.001

    CrossRef Google Scholar

    [47] Ziegler M, Loew S, Moore J R. Distribution and inferred age of exfoliation joints in the Aar Granite of the central Swiss Alps and relationship to Quaternary landscape evolution[J]. Geomorphology, 2013, 201: 344-362. doi: 10.1016/j.geomorph.2013.07.010

    CrossRef Google Scholar

    [48] Ziegler M, Loew S, andAmann F. Near-surface rock stress orientations in alpine topography derived from exfoliation fracture markings and 3D numerical modelling[J]. International Journal of Rock Mechanics & Mining Sciences, 2016, 85: 129-151.

    Google Scholar

    [49] 吕洪波, 高于, 浦津, 等. 大兴安岭南段赛罕乌拉石海剖面分析及其与蒙山拦马墙石河结构对比[J]. 地质论评, 2020, 66(6): 1572-1588.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(2148) PDF downloads(84) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint