2022 Vol. 41, No. 4
Article Contents

FENG Zhigang, LIU Wei, ZHANG Lanying, LI Peishan, MA Qiang. Enrichment and supernormal enrichment phenomenon of Cd in soils developed on Cd-poor carbonate rocks: A case study of karst areas in Guizhou, China[J]. Geological Bulletin of China, 2022, 41(4): 533-544. doi: 10.12097/j.issn.1671-2552.2022.04.002
Citation: FENG Zhigang, LIU Wei, ZHANG Lanying, LI Peishan, MA Qiang. Enrichment and supernormal enrichment phenomenon of Cd in soils developed on Cd-poor carbonate rocks: A case study of karst areas in Guizhou, China[J]. Geological Bulletin of China, 2022, 41(4): 533-544. doi: 10.12097/j.issn.1671-2552.2022.04.002

Enrichment and supernormal enrichment phenomenon of Cd in soils developed on Cd-poor carbonate rocks: A case study of karst areas in Guizhou, China

  • Based on the study on the distribution characteristics of Cd for 19 weathering profiles in the karst areas of Guizhou, China, this work preliminarily revealed the enrichment mechanisms of Cd and the restrictive factors of Cd contents in soils developed on Cd-poor carbonate rocks.The main conclusions are as follows: ① Soils derived from Cd-poor bedrocks can also contain obvious enrichment or even supernormal enrichment phenomenon of Cd, and the summit content of Cd is usually located at the bottom of the soil layer(i.e., T1).② Cd generally preferentially occurs in acid-insoluble phase in bedrocks, and on the other hand, owing to very low mass percentage of acid-insoluble residues in bedrocks, the proportion of Cd of acid-soluble phase in the bulk rocks still has an abnormal advantage.Thus, on the basis of Cd-rich acid-insoluble phase in bedrocks, combined with the contribution of Cd from acid-soluble phase in bedrocks, it creates a fact that Cd is universally rich in soils in the karst areas.③ The content of Cd in soils is not directly related to its content in bedrocks or acid-insoluble residues of bedrocks, and it is constrained by the content of Cd in acid-insoluble residues of bedrocks, the mass percentage of Cd of acid-soluble phase in the bulk rock and the loss rate of Cd in T1 together.The optimum conditions conducive to the extraordinary enrichment of Cd in T1 contain three aspects as high level of Cd in acid-insoluble residues of bedrocks, large proportion of Cd of acid-soluble phase in the bulk rock and low loss rate of Cd in T1.In addition, for the soil layer formed by the accumulation of acid insoluble residues in bedrocks, T1 is the starting point for its development and evolution.The higher the content of Cd is in T1, the higher it is usually in the soil layer, reflecting the development characteristics of general weathering profile.This study might deepen the understanding of geochemical behavior of Cd in karst environment, and provide reference for regional Cd pollution risk assessment based on geological genesis and establishing its cleaning level.

  • 加载中
  • [1] 牟保磊. 元素地球化学[M]. 北京: 北京大学出版社, 1999: 181-183.

    Google Scholar

    [2] Alloway B J. Cadmium[C]//Heavy metals in soils(2nd edition). London: Blackie Academic and Professional, 1995: 122-147.

    Google Scholar

    [3] Gong H, Rose A W, Suhr N H. The geochemistry of cadmium in some sedimentary rocks[J]. Geochimica et Cosmochimica Acta, 1977, 41: 1687-1692. doi: 10.1016/0016-7037(77)90200-9

    CrossRef Google Scholar

    [4] Bowen H J M. Environmental chemistry of the elements[M]. London: Academic Press, 1979: 59.

    Google Scholar

    [5] Rudnick R L, Gao S. Composition of the continental crust[C]//Holland H D, Turekian K K. Treatise on Geochemistry(The Crust vol. 3)Oxford: Elsevier Science, 2003: 1-64.

    Google Scholar

    [6] 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007: 1-148.

    Google Scholar

    [7] Vig K, Megharaj M, Sethunathan N. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review[J]. Advances in Environmental Research, 2004, 8: 121-135.

    Google Scholar

    [8] Pan J, Plant J A, Voulvoulis N, et al. Cadmium levels in Europe: implications for human health[J]. Environmental Geochemistry and Health, 2010, 32: 1-12. doi: 10.1007/s10653-009-9273-2

    CrossRef Google Scholar

    [9] Reimann C, Fabian K, Flem B. Cadmium enrichment in topsoil: separating diffuse contamination from biosphere-circulation signals[J]. Science of the Total Environment, 2019, 651: 1344-1355. doi: 10.1016/j.scitotenv.2018.09.272

    CrossRef Google Scholar

    [10] Luo L, Ma Y, Zhang S, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90: 2524-2530.

    Google Scholar

    [11] Zhu J, Hong K, Shen X, et al. A new method for evaluating the bioaccessibility of different foodborne forms of cadmium[J]. Toxicology Letters, 2020, 319: 31-39. doi: 10.1016/j.toxlet.2019.11.002

    CrossRef Google Scholar

    [12] Liang J, Feng C, Zeng G, et al. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China[J]. Environmental Pollution, 2017, 225: 681-690. doi: 10.1016/j.envpol.2017.03.057

    CrossRef Google Scholar

    [13] World Health Organization(WHO). Exposure to Cadmium: A Major Public Health Concern[C]//World Health Organization, Geneva, 2010: 3-6.

    Google Scholar

    [14] Nriagu J O, Pacyna J M. Quantitative assessment of worldwide contamination of air, water and soils with trace metals[J]. Nature, 1988, 333: 134-139. doi: 10.1038/333134a0

    CrossRef Google Scholar

    [15] Baveye P, McBride M B, Bouldin D, et al. Mass balance and distribution of sludge-borne trace elements in a silt loam soil following long-term applications of sewage sludge[J]. Science of the Total Environment, 1999, 227: 13-28. doi: 10.1016/S0048-9697(98)00396-9

    CrossRef Google Scholar

    [16] Luo L, Ma Y, Zhang S, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90: 2524-2530.

    Google Scholar

    [17] Garrett R G, Porter A R D, Hunt P A, et al. The presence of anomalous trace element levels in present day Jamaican soils and the geochemistry of Late-Miocene or Pliocene phosphorites[J]. Applied Geochemistry, 2008, 23: 822-834. doi: 10.1016/j.apgeochem.2007.08.008

    CrossRef Google Scholar

    [18] Liu Y, Xiao T, Zhu Z, et al. Geogenic pollution, fractionation and potential risks of Cd and Zn in soils from a mountainous region underlain by black shale[J]. Science of the Total Environment, 2021, 760: 143426. doi: 10.1016/j.scitotenv.2020.143426

    CrossRef Google Scholar

    [19] Ketris, M P, Yudovich Ya E. Estimations of Clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology, 2009, 78: 135-148. doi: 10.1016/j.coal.2009.01.002

    CrossRef Google Scholar

    [20] Nathan Y, Benalioulhaj N, Prevot L, et al. The geochemistry of cadmium in the phosphate-rich and organic-rich sediments of the Oulad-Abdoun and Timahdit basins(Morocco)[J]. Journal of African Earth Sciences, 1996, 22: 17-27. doi: 10.1016/0899-5362(95)00124-7

    CrossRef Google Scholar

    [21] Quezada Hinojosa R P, Matera V, Adatte T, et al. Cadmium distribution in soils covering Jurassic oolitic limestone with high Cd contents in the Swiss Jura[J]. Geoderma, 2009, 150: 287-301. doi: 10.1016/j.geoderma.2009.02.013

    CrossRef Google Scholar

    [22] Baize D, Sterckeman T. Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements[J]. Science of the Total Environment, 2001, 264: 127-139. doi: 10.1016/S0048-9697(00)00615-X

    CrossRef Google Scholar

    [23] Rambeau C. Cadmium Anomalies in Jurassic Carbonates(Bajocian, Oxfordian)in Western and Southern Europe[D]. University of Neuchâtel, Switzerland, 2006: 1-236.

    Google Scholar

    [24] Quezada Hinojosa R, Föllmi K B, Gillet F, et al. Cadmium accumulation in six common plant species associated with soils containing high geogenic cadmium concentrations at Le Gurnigel, Swiss Jura Mountains[J]. Catena, 2015, 124: 85-96. doi: 10.1016/j.catena.2014.09.007

    CrossRef Google Scholar

    [25] Prudente D. Distribution des teneurs naturelles en cadmium dans les sols de la forêt communale des Fourgs(Doubs, France)[D]. Ecole Polytechnique Fédérale de Lausanne, Switzerland, 1999: 1-100.

    Google Scholar

    [26] Liu Y Z, Xiao T F, Ning Z P, et al. High cadmium concentrations in soil in the Three Gorges region: Geogenic source and potential bioavailability[J]. Applied Geochemistry, 2013, 37: 149-156. doi: 10.1016/j.apgeochem.2013.07.022

    CrossRef Google Scholar

    [27] 田恒川, 徐国志. 镉地球化学行为与我国西南地区镉污染[J]. 现代矿业, 2014, (11): 134-136.

    Google Scholar

    [28] 何腾兵, 董玲玲, 李广枝, 等. 喀斯特山区不同母质(岩)发育的土壤主要重金属含量差异性研究[J]. 农业环境科学学报, 2007, 27(1): 188-193.

    Google Scholar

    [29] Chen H, Teng Y, Lu S, et al. Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 2015, 512/513: 143-153. doi: 10.1016/j.scitotenv.2015.01.025

    CrossRef Google Scholar

    [30] Zhao F J, Ma Y, Zhu Y G, et al. Soil contamination in China: current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49: 750-759.

    Google Scholar

    [31] Yang Q, Li Z, Lu X, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of the Total Environment, 2018, 642: 690-700. doi: 10.1016/j.scitotenv.2018.06.068

    CrossRef Google Scholar

    [32] Zhang S, Song J. Geochemical cadmium anomaly and bioaccumulation of cadmium and lead by rapeseed(Brassica napus L. )from noncalcareous soils in the Guizhou Plateau[J]. Science of the Total Environment, 2018, 644: 624-634. doi: 10.1016/j.scitotenv.2018.06.230

    CrossRef Google Scholar

    [33] 何邵麟, 龙超林, 刘应忠, 等. 贵州地表土壤及沉积物中镉的地球化学与环境问题[J]. 贵州地质, 2004, (4): 245-250.

    Google Scholar

    [34] Wen Y, Li W, Yang Z, et al. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China[J]. Chemosphere, 2020, 245: 125620. doi: 10.1016/j.chemosphere.2019.125620

    CrossRef Google Scholar

    [35] Xia X Q, Ji J F, Yang Z F, et al. Cadmium risk in the soil-plant system caused by weathering of carbonate bedrock[J]. Chemosphere, 2020, 254: 126799. doi: 10.1016/j.chemosphere.2020.126799

    CrossRef Google Scholar

    [36] Zhu L, Qi L. Chemical forms of heavy metals in carbonate-derived laterite and enrichment of its iron oxide minerals[J]. Chinese Journal of Geochemistry, 1997, 16: 263-270. doi: 10.1007/BF02870910

    CrossRef Google Scholar

    [37] Jacquat O, Voegelin A, Juillot F, et al. Changes in Zn speciation during soil formation from Zn-rich limestones[J]. Geochimica et Cosmochimica Acta, 2009, 73: 5554-5571. doi: 10.1016/j.gca.2009.05.069

    CrossRef Google Scholar

    [38] Ni S, Ju Y, Hou Q, et al. Enrichment of heavy metal elements and their adsorption on iron oxides during carbonate rock weathering process[J]. Progress in Natural Science, 2009, 19: 1133-1139. doi: 10.1016/j.pnsc.2009.01.008

    CrossRef Google Scholar

    [39] Rambeau C M C, Baize D, Saby N, et al. High cadmium concentrations in Jurassic limestone as the cause for elevated cadmium levels in deriving soils: a case study in Lower Burgundy, France[J]. Environmental Earth Sciences, 2010, 61: 1573-1585. doi: 10.1007/s12665-010-0471-0

    CrossRef Google Scholar

    [40] 李瑞玲, 王世杰, 周德全, 等. 贵州岩溶区土地石漠化与岩性的空间相关性研究[J]. 地理学报, 2003, 58(2): 314-320.

    Google Scholar

    [41] Wang S, Ji H, Ouyang Z, et al. Preliminary study on weathering and pedogenesis of carbonate rock[J]. Science in China(Ser. D), 1999, 42(6): 572-581. doi: 10.1007/BF02877784

    CrossRef Google Scholar

    [42] Ji H, Wang S, Ouyang Z, et al. Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau I. The formation of the Pingba profile[J]. Chemical Geology, 2004, 203: 1-27. doi: 10.1016/j.chemgeo.2003.08.012

    CrossRef Google Scholar

    [43] Feng J L, Zhu L P, Cui Z J. Quartz features constrain the origin of terra rossa over dolomite on the Yunnan-Guizhou Plateau, China[J]. Journal of Asian Earth Sciences, 2009, 36: 156-167. doi: 10.1016/j.jseaes.2009.05.003

    CrossRef Google Scholar

    [44] Liu W J, Liu C Q, Zhao Z Q, et al. Elemental and strontium isotopic geochemistry of the soil profiles developed on limestone and sandstone in karstic terrain on Yunnan-Guizhou Plateau, China: Implications for chemical weathering and parent materials[J]. Journal of Asian Earth Sciences, 2013, 67/68: 138-152. doi: 10.1016/j.jseaes.2013.02.017

    CrossRef Google Scholar

    [45] Wei X, Ji H, Li D, et al. Material source analysis and element geochemical research about two types of representative bauxite deposits and terra rossa in western Guangxi, southern China[J]. Journal of Geochemical Exploration, 2013, 133: 68-87. doi: 10.1016/j.gexplo.2013.07.010

    CrossRef Google Scholar

    [46] Gong Q, Zhang G, Zhang J, et al. Behavior of REE fractionation during weathering of dolomite regolith profile in southwest China[J]. Acta Geologica Sinica, 2010, 84(6): 1439-1447. doi: 10.1111/j.1755-6724.2010.00339.x

    CrossRef Google Scholar

    [47] 冯志刚, 马强, 李石朋, 等. 碳酸盐岩风化壳岩-土界面风化作用机制——对岩粉层淋溶模拟的初步研究[J]. 地质学报, 2013, 87(1): 119-132.

    Google Scholar

    [48] 孙承兴, 王世杰, 刘秀明, 等. 碳酸盐岩风化壳岩-土界面地球化学特征及其形成过程——以贵州花溪灰岩风化壳剖面为例[J]. 矿物学报, 2002, 22(2): 126-132.

    Google Scholar

    [49] Brimhall G H, Dietrich W E. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metosomatic hydrochemical systems: Results on weathering and pedogenesis[J]. Geochimica et Cosmochimica Acta, 1987, 51: 567-587. doi: 10.1016/0016-7037(87)90070-6

    CrossRef Google Scholar

    [50] 冯志刚, 刘炫志, 韩世礼, 等. 碳酸盐岩风化过程中高场强元素的地球化学行为研究: 来自碳酸盐岩淋溶实验的证据[J]. 中国岩溶, 2018, 37(3): 315-329.

    Google Scholar

    [51] 生态环境部, 国家市场监督管理总局. 《中国环境质量农用地土壤污染风险管控标准(试行)》(GB 15618—2018)[S]. 北京: 中国环境科学出版社, 2018: 1-4.

    Google Scholar

    [52] Vingiani S, Di Iorio E, Colombo C, et al. Integrated study of red mediterranean soils from southern Italy[J]. Catena, 2018, 168: 129-140. doi: 10.1016/j.catena.2018.01.002

    CrossRef Google Scholar

    [53] Pinto M M S C, Silva M M V G, da Silva E A F, et al. Transfer processes of potentially toxic elements(PTE)from rocks to soils and the origin of PTE in soils: A case study on the island of Santiago(Cape Verde)[J]. Journal of Geochemical Exploration, 2017, 183: 140-151. doi: 10.1016/j.gexplo.2017.06.004

    CrossRef Google Scholar

    [54] Duan Y, Yang Z, Yu T, et al. Geogenic cadmium pollution in multi-medians caused by black shales in Luzhai, Guangxi[J]. Environmental Pollution, 2020, 260: 113905. doi: 10.1016/j.envpol.2019.113905

    CrossRef Google Scholar

    [55] Bradshaw P M D, Thomson I, Smee B W, et al. The application of different analytical extractions and soil profile sampling in exploration geochemistry[J]. Journal of Geochemical Exploration, 1974, 3: 209-225. doi: 10.1016/0375-6742(74)90023-5

    CrossRef Google Scholar

    环境保护部, 国土资源部. 《全国土壤污染状况调查公报》, 2014. https://wenku.baidu.com/view/71b0794b90c69ec3d5bb7559.html.

    Google Scholar

    中国地质调查局. 《中国耕地地球化学调查报告(2015)》, 2015. https://max.book118.com/html/2018/0812/7140124163001142.shtm.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(1764) PDF downloads(109) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint