2023 Vol. 50, No. 4
Article Contents

NIU Xinsheng, LIU Xifang, LÜ Yuanyuan, WU Qian. 2023. Origin mechanism of thermal springs and their supply of minerals to the salt lake(Li-Rb-Cs) in the Tangqung Co watershed of Tibet[J]. Geology in China, 50(4): 1163-1175. doi: 10.12029/gc20220527001
Citation: NIU Xinsheng, LIU Xifang, LÜ Yuanyuan, WU Qian. 2023. Origin mechanism of thermal springs and their supply of minerals to the salt lake(Li-Rb-Cs) in the Tangqung Co watershed of Tibet[J]. Geology in China, 50(4): 1163-1175. doi: 10.12029/gc20220527001

Origin mechanism of thermal springs and their supply of minerals to the salt lake(Li-Rb-Cs) in the Tangqung Co watershed of Tibet

    Fund Project: Supported by the projects of National Natural Science Fund of China (No.41402076, No.91962219), China Geological Survey (No.DD20221913, No.DD20232096) and the Fundamental Research Funds (No.K1413, No.KK2210)
More Information
  • Author Bio: NIU Xinsheng, male, born in 1980, Ph.D, professor level senior engineer, major in salt mineral exploration; E-mail: xsh_niu@foxmail.com
  • This paper is the result of mineral exploration engineering.

    Objective

    The Tangqung Co area in Tibet is located in the north of Tangra Yum Co-Xuru Co rift. The presence of geothermal springs in locations like Qurebaima and Zhariqusheng has prompted the need for a comprehensive study of their hydrochemical characteristics and origin, particularly regarding their contribution of Li and Rb substances to the Tangqung Co salt lake.

    Methods

    This study involved the collection and analysis of six spring water samples to determine their chemical composition and stable isotopes. Various chemical coefficients and mineral saturation indices were calculated, and cluster analysis was performed on the chemical components of the springs.

    Results

    The findings reveal that Qurebaima spring waters exhibit enrichments in elements such as Li, B, Rb, and Cs. These springs are influenced by atmospheric rainfall and snowmelt, displaying shallow circulation characteristics. The springs' extended flow path and substantial water-rock interaction contribute to the predominance of HCO3- originating from carbonate rocks and CO2 produced by magmatic activity. Moreover, the calculated thermal reservoir temperature based on SiO2 geothermometers falls within the range of 123.33 to 128.22℃ for Qurebaima samples.

    Conclusions

    Geothermal activity in the Tangqung Co area is governed by the N-S trending Tangra Yum Co-Xuru Co rift valley, wherein the geothermal water acquires Li, Rb, Cs, and other trace elements through interactions with silicate minerals. Additionally, the water-rock interaction extends to the Permian and Cretaceous carbonate rocks, ascending along active faults in the region, and ultimately mixing with water from the Tangqung Co lake. This phenomenon suggests that the formation of Li and Rb-rich salt lakes in Tibet may be associated with extensive N-S rift activities, which not only provide geographic space for the accumulation and mineralization of salt lakes but also act as conduits between deep sources and surface environments.

  • 加载中
  • Arnórsso S, Andrésdótt A. 1995. Processes controlling the distribution of boron and chlorine in natural waters in Iceland[J]. Geochimica et Cosmochimica Acta, 59(20): 4125-4146. doi: 10.1016/0016-7037(95)00278-8

    CrossRef Google Scholar

    Bian Shuang, Yu Zhiquan, Gong Junfeng, Yang Rong, Cheng Xiaogan, Lin Xiubin, Chen Hanlin. 2021. Spatiotemporal distribution and geodynamic mechanism of the nearly NS-trending rifts in the Tibetan Plateau[J]. Journal of Geomechanics, 27(2): 178-194(in Chinese with English abstract).

    Google Scholar

    Brown L D, Zhao W J, Nelson K D, Hauck M, Alsdorf D, Ross A, Cogan M, Clark M, Liu Xianwen, CheJinke, 1996. Bright spots, structure, and magmatism in southern Tibet from INDEPTH serimic reflection profiling[J]. Science, 274: 1688-1690. doi: 10.1126/science.274.5293.1688

    CrossRef Google Scholar

    Can. 2002. A new improved Na/K geothermometer by artificial neural networks[J]. Geothermics, 31: 751-760. doi: 10.1016/S0375-6505(02)00044-5

    CrossRef Google Scholar

    Cao Shenghua, Li Dewei, Yu Zhongzhen, Xu Zufeng, Tang Fenglin. 2009. Characteristics and mechanism of the Dangra Yun Co and Xuru Co NS-trending graben in the Gangdese, Tibet[J]. Earth Science, 34(6): 914-920 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2009.06.005

    CrossRef Google Scholar

    Dewane T J, Stockli D F, Hager C, Taylor M, Wallis S R. 2006. Timing of Cenozoic E-W extension in the Tangra Yum Co-Kung Co rift, south-central Tibet[C]//American Geophysical Union Fall Meeting. San Francisco: AGU.

    Google Scholar

    Fournier R O, Potter R W. 1982. A revised and expanded silica (quartz) geothermometer[J]. Geothermal Resources Council Bulletin, 11: 3-12.

    Google Scholar

    Fournier R O, Truesdell A H. 1973. An empirical Na-K-Ca geothermometer for natural waters[J]. Geochimica et Cosmochimica Acta, 37: 1255-1275. doi: 10.1016/0016-7037(73)90060-4

    CrossRef Google Scholar

    Frondini F, Carliro S, Cardellini C, Chiodini G, Morgantini N. 2009. Carbon dioxide degassing and thermal energy release in the Monte Amiata volcanic-geothermal area (Italy)[J]. Applied Geochemistry, 24: 860-875. doi: 10.1016/j.apgeochem.2009.01.010

    CrossRef Google Scholar

    Giggenbach W F. 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 52: 2749-2765. doi: 10.1016/0016-7037(88)90143-3

    CrossRef Google Scholar

    Guo Qinghai, Yang Chen. 2021. Tungsten anomaly of the high-temperature hot springs in the Daggyai hydrothermal area, Tibet, China[J]. Earth Science, 46(7): 2544-2554 (in Chinese with English abstract).

    Google Scholar

    Han Yinwen, Ma Zhendong. 2003. Geochemistry[M]. Beijing: Geological Publishing House, 268-301 (in Chinese).

    Google Scholar

    He Rizheng, Gao Rui. 2003. Some significances of studying north-southern rift in Tibet plateau[J]. Progress in Geophysics, 18(1): 35-43 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-2903.2003.01.006

    CrossRef Google Scholar

    He Yongmei, Xun Xiaohui, Xie Ye. 2016. Formed causes and Hydro-geochemistry characteristics hot springs in Tibet Voca[J]. Journal of Geological Hazards and Environment Preservation, 27(4): 66-70 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-4362.2016.04.012

    CrossRef Google Scholar

    Jonell T N, Aitchison Jonathan C, Li Guoqiang, Shulmeister James, Zhou Renjie, Zhang Haixia. 2020. Revisiting growth and decline of late Quaternary mega-lakes across the south-central Tibetan Plateau[J]. Quaternary Science Reviews, 248: 1-23.

    Google Scholar

    Li He, Li Jun, Liu Xiaolong, Yang Xi, Zhang Wei, Wang Jie, Niu Yingquan. 2015. Composition characteristics and source analysis of major ions in four small lake-watersheds on the Tibetan Plateau, China[J]. Environmental Science, 36(2): 430-437(in Chinese with English abstract).

    Google Scholar

    Li Mingli, Duo Ji, Wang Zhu, Wu Guodong, Jiang Zhenzhen, Liu Gaoling. 2015. Hydrochemical characteritics and material sources of the Riduo thermal spring in Tibet[J]. Carsologica Sinica, 34(3): 209-216(in Chinese with English abstract).

    Google Scholar

    Li Yalin, Wang Chengshan, Yi Haisheng, Li Yong, Wang Mou. 2005. A discussion on several problems regarding to the Cenozoic grabens in the Qinghai-Tibet Plateau[J]. Geological Review, 52(5): 493-501. doi: 10.3321/j.issn:0371-5736.2005.05.002

    CrossRef Google Scholar

    Li Zhenqing, Hou Zengqian, Nie Fengjun, Yang Zhusen, Qu Xiaoming, Meng Xiangjin, Zhao Yuanyi. 2006. Enrichment of element cesium during modern geothermal action in Tibet, China[J]. Acta Geological Sinica, 80(9): 1457-1464 (in Chinese with English abstract).

    Google Scholar

    Liao Zhijie, Zhao Ping. 1999. Yunnan-Tibet geothermal gelt-geothermal resources and case histories[J]. Beijing: Science Press, 153 (in Chinese).

    Google Scholar

    Liu Xifang, Zheng Mianping, Qi Wen. 2007. Sources of ore-forming materials of the superlarge B and Li deposit in Zabuye salt lake, Tibet, China[J]. Acta Geological Sinica, 81(12): 1709-1715 (in Chinese with English abstract).

    Google Scholar

    Long Denghong, Zhou Xiaolong, Yang Kunguang, Gu Pingyang, Gao Yinghu, Wang Shuming, Chen Guifan. 2021. Research on relationship between the deep structure and geothermal resource distribution in the Northeastern Tibetan Plateau[J]. Geology in China, 48(3): 721-731 (in Chinese with English abstract).

    Google Scholar

    Luo Shaoqiang, Xu Lin, Tang Hua, Xiao Jin, Hu Lin. 2020. Hydrochemical and isotopic characteristics of Chazi geothermal field in Shigatse in Tibet[J]. Geological Survey of China, 7(5): 10-15(in Chinese with English abstract).

    Google Scholar

    Luo Yangbing, Zheng Mianping. 2016. Origin of Boron in the Dangxiong Co salt lake[J]. Acta Geologica Sinica, 90(8): 1900-1907(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.08.018

    CrossRef Google Scholar

    Ma Bing, Jia Lingxiao, Yu Yang, Wang Huan. 2021. The development and utilization of geothermal energy in the world[J]. Geology in China, 48(6): 1734-1747 (in Chinese with English abstract).

    Google Scholar

    Minissale A. 1991. Thermal springs in Italy: Their relation to recent tectonics[J]. Applied Geochemistry, 6: 201-212. doi: 10.1016/0883-2927(91)90030-S

    CrossRef Google Scholar

    Nelson K D, Zhao W J, Brown L D, Che J K, Liu X W, Klemperer S L, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nabelek J, Leshou C, Tan H D, Wei W B, Jones A G, Booker J, Unsworth M, Kidd W S F, Hauck M, Alsdorf D, Ross A, Cogan M, Wu C D, Sandvol E, Edwards M. 1996. Partially molten middle crust beneath southern Tibet: Syn-thesis of project INDEPTH results[J]. Science, 274: 1684-1688. doi: 10.1126/science.274.5293.1684

    CrossRef Google Scholar

    Qiu Nansheng, Tang Boning, Zhu Chuanqing. 2022. Deep thermal background of hot spring distribution in the Chinese continent[J]. Acta Geological Sinica, 96(1): 195-207(in Chinese with English abstract).

    Google Scholar

    Tong Wei, Zhang Zhifei, Liao Zhijie, Zhu Meixiang. 1982. Hydrothermal activities occurring in Xizang (Tibetan) plateau and preliminary discussion about the thermal regime within its upper crust[J]. Acta Geophysica Sinica, 25(1): 34-40 (in Chinese with English abstract).

    Google Scholar

    Tong Wei, Zhang Zhifei, Zhang Mingtao, Liao Zhijie, You Maozheng, Zhu Meixiang, Guo Guoying, Liu Shibin. 1978. Himalayan geothermal belt[J]. Peking University Journal (Nature Sciences), 1: 76-89 (in Chinese with English abstract).

    Google Scholar

    Tong Yingshi, Mao Jixiang, Tong Min. 2002. The forming condition of underground heatflow and its relation to earthquake[J]. South China Journal of Seismology, 22(2): 53-58 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-8662.2002.02.008

    CrossRef Google Scholar

    Vengosh A, Helvaci C, Karamanderesi I H. 2002. Geochemical constraints for the origin of thermal waters from western Turkey[J]. Applied Geochemistry, 17: 163-183. doi: 10.1016/S0883-2927(01)00062-2

    CrossRef Google Scholar

    Wang Denghong, Du Xiaofang, Ying Hanlong. 2007. Geochemistry and significance of modern hot-spring sinters in western Sichuan[J]. Journal of Jilin University(Earth Science Edition), 37(5): 878-883(in Chinese with English abstract).

    Google Scholar

    Wang Peng, Chen Xiaohong, Shen Licheng, Xiao Qiong, Wu Xiaoqing. 2016. Reservoir temperature of geothermal anomaly area and its environmental effect in Tibet[J]. Geology in China, 43(4): 1429-1438 (in Chinese with English abstract).

    Google Scholar

    Wei Wenbo, Chen Leshou, Tang Handong, Deng Ming, Hu Jiande, Jinsheng. 1997. Features of thermal structure and highly conductive bodies in middle crust beneath central and southern Tibet: According to INDEPTH-MT results[J]. Geoscience, 11(3): 387-392 (in Chinese with English abstract).

    Google Scholar

    Wu Kunyu, Shen Licheng, Wang Xianggui, Xiao Qiong, Wang Peng. 2011. Study on hydro chemical features of hot springs in Langjiu geothermal field, Tibet, China[J]. Carsologica Sinica, 30(1): 1-8(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2011.01.001

    CrossRef Google Scholar

    Wu Qian, Zheng Mianping, Nie Zhen, Bu Lingzhong. 2013. Scale-up study on potassium extraction from Dangxiongcuo salt lake brine by evaporating ponds[J]. Chinese Journal of Inorganic Chemistry, 29(1): 36-44 (in Chinese with English abstract).

    Google Scholar

    Xie Guogang, Zou Aijian, Yuan Jianya. 2013. Geological Survey Report of Bangduo Sheet at Scale 1∶250000[M]. Beijing: Geological Publishing House, 183-185 (in Chinese).

    Google Scholar

    Xie Guogang, Zou Aijian, Yuan Jianya. 2014. Geological Survey Report of Cuomai Sheet at Acale 1 : 250000[M]. Beijing: Geological publishing house, 183-185 (in Chinese).

    Google Scholar

    Xu Peng, Tan Hongbing, Zhang Yanfei, Zhang Wenjie. 2018. Geochemical characteristics and source mechanism of geothermal water in Tethys Himalaya belt[J]. Geology in China, 45(6): 1142-1154 (in Chinese with English abstract).

    Google Scholar

    Ye Gaofeng, Jin Sheng, Wei Wenbo, Martyn Unsworth. 2007. Research of conductive structure of crust and upper mantle beneath the south-central Tibetan plateau[J]. Earth Science, 32(4): 491-498 (in Chinese with English abstract).

    Google Scholar

    Yu Haowen, Liu Zhao, Rong Feng, Chen Kang, Nan Dawa, Liu Shijuan, Liu Shaoyun. 2021. Characteristics and source mechanism of geothermal field in Cuona, Tibet[J]. Bulletin of Geological Science and Technology, 40(3): 34-44(in Chinese with English abstract).

    Google Scholar

    Zhang Chunchao, Li Xiangquan, Ma Jianfei, Fu Changchang, Bai Zhanxue. 2021. Formation model of geothermal water in Chaya of Tibet: Perspective from hydrochemistry and stable isotopes[J]. Geoscience, 35(1), 199-208 (in Chinese with English abstract).

    Google Scholar

    Zhang Jiawei, Li Hanao, Zhang Huiping, Xu Xinyue. 2020. Research progress in Cenozoic N-S striking rifts in Tibetan plateau[J]. Advances in Earth Science, 35(8): 848-862 (in Chinese with English abstract).

    Google Scholar

    Zhang Jingrong, Lu Jianjun, Wang Wei. 1994. The Shimen hot spring-type As-(Au) deposit, Hunan Province[J]. Geological Review, 40(5): 429-435 (in Chinese with English abstract).

    Google Scholar

    Zhang Jinjiang, Ding Lin. 2003. East-west extension in Tibetan plateau and its significance to tectonic evolution[J]. Chinese Journal of Geology, 38(2): 179-189(in Chinese with English abstract).

    Google Scholar

    Zhang Meng, Lin Wenjing, Liu Zhao, Liu Zhiming, Hu Xiancai, Wang Guiling. 2014. Hydrogeochemical characteristics and genetic model of Gulu high-temperrature geothermal system in Tibet, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 41(3): 382-392(in Chinese with English abstract).

    Google Scholar

    Zhang Renquan, Liang Xing, Jin Menggui, Wan Li, Yu Qingchun. 2011. Fundamentals of Hydrogeology (6th edition)[M]. Beijing: Geological Publishing House.

    Google Scholar

    Zhang Xu, Hao Hongbing, Liu Kanglin, Mao Wulin, Xiao Yao, Zhang Wen. 2020. Hydrogeochemical characteristics and genetic model of Oiga Graben geothermal waters system in Tibet[J]. Geology in China, 47(6): 1702-1714(in Chinese with English abstract).

    Google Scholar

    Zhao Ping, Xie Ejun, Duo Ji, Jin Jian, Hu Xiancai, Du Shaoping, Yao Zhonghua. 2002. Geochemical characteristics of geothermal gases and their geological implications in Tibet[J]. Acta Petrologica Sinica, 18(4) : 539-550(in Chinese with English abstract).

    Google Scholar

    Zhao Yuanyi, Zhao Xitao, Ma Zhibang, Deng Jian. 2010. Chronology of the Gulu hot spring cesium deposit in Nagqu, Tibet and it geological significance[J]. Acta Geological Sinica, 84(2): 211-220(in Chinese with English abstract).

    Google Scholar

    Zhao Zhenhua. 1997. Principles of Trace Elements Geochemistry[M]. Beijing: Science Press(in Chinese)

    Google Scholar

    Zheng Mianping, Xiang Jun, Wei Xinjun, Zheng Yuan. 1989. Saline Lakes on the Qinghai-Xizang (Tibet) Plateau[M]. Beijing: Beijing Scientific and Technical Publishing House, 97-100(in Chinese).

    Google Scholar

    Zheng Mianping, Liu Xifang. 2010. Hydrochemistry and minerals assemblages of salt lakes in the Qinghai-Tibet plateau, China[J]. Acta Geological Sinica, 84(11): 1585-1600 (in Chinese with English abstract).

    Google Scholar

    Zheng Mianping, Wang Qiuxia, Duo Ji, Liu Jie, Pingcuowangjie, Zhang Suchun. 1995. New Types of Hydrothermal Mineralization: Cesium Sinter Deposit in Tibet[M]. Beijing: Geological Publishing House, 1-26 (in Chinese with abstract).

    Google Scholar

    卞爽, 于志泉, 龚俊峰, 杨蓉, 程晓敢, 林秀斌, 陈汉林. 2021. 青藏高原近南北向裂谷的时空分布特征及动力学机制[J]. 地质力学学报, 27(2): 178-194.

    Google Scholar

    曹圣华, 李德威, 余忠珍, 徐祖丰, 唐峰林. 2009. 西藏冈底斯当惹雍错-许如错南北向地堑的特征及成因[J]. 地球科学, 34(6): 914-920.

    Google Scholar

    郭清海, 杨晨. 2021. 西藏搭格架高温热泉中钨的水文地球化学异常[J]. 地球科学, 46(7): 2544-2554.

    Google Scholar

    韩吟文, 马振东. 2003. 地球化学[M]. 北京: 地质出版社, 268-301.

    Google Scholar

    贺日政, 高锐. 2003. 西藏高原南北向裂谷研究意义[J]. 地球物理学进展, 18(1): 35-43.

    Google Scholar

    贺咏梅, 荀晓慧, 谢晔. 2016. 西藏沃卡温泉水文地球化学特征及成因[J]. 地质灾害与环境保护, 27(4): 66-70.

    Google Scholar

    李鹤, 李军, 刘小龙, 杨曦, 张伟, 王洁, 牛颖权. 2015. 青藏高原湖泊小流域水体离子组成特征及来源分析[J]. 环境科学, 36(2): 430-437.

    Google Scholar

    李明礼, 多吉, 王祝, 邬国栋, 姜贞贞, 刘高令. 2015. 西藏日多温泉水化学特征及其物质来源[J]. 中国岩溶, 34(3): 209-216.

    Google Scholar

    李亚林, 王成善, 伊海生, 李勇, 王谋. 2005. 青藏高原新生代地堑构造研究中的几个问题的讨论[J]. 地质论评, 50(5): 493-501.

    Google Scholar

    李振清, 侯增谦, 聂凤军, 杨竹森, 曲晓明, 孟祥金, 赵元艺. 2006. 西藏地热活动中铯的富集过程探讨[J]. 地质学报, 80(9): 1457-1464.

    Google Scholar

    廖志杰, 赵平. 1999. 滇藏地热带——地热资源和典型地热系统[M]. 北京: 科学出版社.

    Google Scholar

    刘喜方, 郑绵平. 齐文. 2007. 西藏扎布耶盐湖超大型B、Li矿床成矿物质来源[J]. 地质学报, 81(12): 1709-1715.

    Google Scholar

    龙登红, 周小龙, 杨坤光, 辜平阳, 高银虎, 王树明, 陈桂凡. 2021. 青藏高原东北缘深部地质构造与地热资源分布关系研究[J]. 中国地质, 48 (3): 721-731.

    Google Scholar

    罗绍强, 徐琳, 唐华, 肖进, 胡林. 2020. 西藏日喀则市查孜地热田水化学及同位素特征研究[J]. 中国地质调查, 7(5): 10-15.

    Google Scholar

    雒洋冰, 郑绵平. 2016. 西藏当雄错盐湖卤水中硼的来源研究[J]. 地质学报, 90(8): 1900-1907.

    Google Scholar

    马冰, 贾凌霄, 于洋, 王欢. 2021. 世界地热能开发利用现状与展望[J]. 中国地质, 48(6): 1734-1747.

    Google Scholar

    邱楠生, 唐博宁, 朱传庆. 2022. 中国大陆地区温泉分布的深部热背景[J]. 地质学报, 96(1): 195-207.

    Google Scholar

    佟伟, 张知非, 章铭陶, 廖志杰, 由懋正, 朱梅湘, 过帼颖, 刘时彬. 1978. 喜马拉雅地热带[J]. 北京大学学报(自然科学版), 1: 76-89.

    Google Scholar

    佟伟, 张知非, 廖志杰, 朱梅湘. 1982. 西藏高原的水热活动和上地壳热状态初探[J]. 地球物理学报, 25(1): 34-40.

    Google Scholar

    童迎世, 毛际香, 童敏. 2002. 地下热泉的形成条件与地震[J]. 华南地震, 22(2): 53-58.

    Google Scholar

    王登红, 付小方, 应汉龙. 2007. 四川西部现代热泉沉积物地球化学特征及意义[J]. 吉林大学学报(地球科学版), 37(5): 878-883.

    Google Scholar

    王鹏, 陈晓宏, 沈立成, 肖琼, 吴孝情. 2016. 西藏地热异常区热储温度及其地质环境效应[J]. 中国地质, 43(4): 1429-1438.

    Google Scholar

    魏文博, 陈乐寿, 谭捍东, 邓明, 胡建德, 金胜. 1997. 西藏中、南部壳内高导体与热结构特点——INDEPTH-MT提供的证据[J]. 现代地质, 11(3): 387-392.

    Google Scholar

    伍坤宇, 沈立成, 王香桂, 肖琼, 王鹏. 2011. 西藏朗久地热田及其温泉水化学特征研究[J]. 中国岩溶, 30(1): 1-8.

    Google Scholar

    伍倩, 郑绵平, 乜贞, 卜令忠. 2013. 当雄错盐湖卤水提钾盐田日晒工艺扩大试验研究[J]. 无机化学学报, 29(1): 36-44.

    Google Scholar

    谢国刚, 邹爱建, 袁建芽. 2013. 区域地质调查报告: 1: 25万邦多区幅[M]. 北京: 地质出版社, 183-185.

    Google Scholar

    谢国刚, 邹爱建, 袁建芽. 2014. 区域地质调查报告: 1: 25万措麦区幅[M]. 北京: 地质出版社, 189-195.

    Google Scholar

    许鹏, 谭红兵, 张燕飞, 张文杰. 2018. 特提斯喜马拉雅带地热水化学特征与物源机制[J]. 中国地质, 45(6): 1142-1154.

    Google Scholar

    叶高峰, 金胜, 魏文博, Martyn Unsworth. 2007. 西藏高原中南部地壳与上地幔导电性结构[J]. 地球科学, 32(4): 491-498.

    Google Scholar

    余浩文, 刘昭, 荣峰, 陈康, 男达瓦, 刘仕娟, 刘绍赟. 2021. 西藏错那地热田水化学特征与物源机制[J]. 地质科技通报, 40(3): 34-44.

    Google Scholar

    张春潮, 李向全, 马剑飞, 付昌昌, 白占学. 2021. 基于水化学及稳定同位素的西藏察雅地下热水成因研究[J]. 现代地质, 35(1): 199-208.

    Google Scholar

    张佳伟, 李汉敖, 张会平, 徐心悦. 2020. 青藏高原新生代南北走向裂谷研究进展[J]. 地球科学进展, 35(8): 848-862.

    Google Scholar

    张进江, 丁林. 2003. 青藏高原东西向伸展及其地质意义[J]. 地质科学, 38(2): 179-189.

    Google Scholar

    张景荣, 陆建军, 王蔚. 1994. 论湖南石门砷一(金)矿床的古热泉成因[J]. 地质论评, 40(5): 429-435.

    Google Scholar

    张萌, 蔺文静, 刘昭, 刘志明, 胡先才, 王贵玲. 2014. 西藏谷露高温地热系统水文地球化学特征及成因模式[J]. 成都理工大学学报(自然科学版), 41(3): 382-392.

    Google Scholar

    张人权, 梁杏, 靳孟贵, 万力, 于青春. 2011. 水文地质学基础(第6版)[M]. 北京: 地质出版社.

    Google Scholar

    章旭, 郝红兵, 刘康林, 毛武林, 肖尧, 张文, 2020. 西藏沃卡地堑地下热水水文地球化学特征及其形成机制[J]. 中国地质, 47(6): 1702-1714.

    Google Scholar

    赵平, 谢鄂军, 多吉, 金建, 胡先才, 杜少平, 姚中华. 2002. 西藏地热气体的地球化学特征及其地质意义[J]. 岩石学报, 18(4): 539-550.

    Google Scholar

    赵元艺, 赵希涛, 马志邦, 邓坚. 2010. 西藏谷露热泉型铯矿床年代学及意义[J]. 地质学报, 84(2): 211-220.

    Google Scholar

    赵振华. 1997. 微量元素地球化学原理[M]. 北京: 科学出版社.

    Google Scholar

    郑绵平, 向军, 魏新俊, 郑元. 1989. 青藏高原盐湖[M]. 北京: 北京科学技术出版社.

    Google Scholar

    郑绵平, 刘喜方. 2010. 青藏高原盐湖水化学及其矿物组合特征[J]. 地质学报, 84(11): 1585-1600.

    Google Scholar

    郑绵平, 王秋霞, 多吉, 刘杰, 平措汪杰, 张苏春. 1995. 水热成矿新类型—西藏铯硅华矿床[M]. 北京: 地质出版社, 1-26.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(4)

Article Metrics

Article views(1703) PDF downloads(122) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint