2023 Vol. 50, No. 4
Article Contents

GAO Nan'an, WANG Xinwei, LIANG Haijun, DU Li, MAO Xiang, LUO Lu. 2023. Genetic mechanism of geothermal system in Daming Sag, Linqing Depression in the junction of Hebei, Shandong and Henan Provinces and its exploration potential[J]. Geology in China, 50(4): 1149-1162. doi: 10.12029/gc20201230002
Citation: GAO Nan'an, WANG Xinwei, LIANG Haijun, DU Li, MAO Xiang, LUO Lu. 2023. Genetic mechanism of geothermal system in Daming Sag, Linqing Depression in the junction of Hebei, Shandong and Henan Provinces and its exploration potential[J]. Geology in China, 50(4): 1149-1162. doi: 10.12029/gc20201230002

Genetic mechanism of geothermal system in Daming Sag, Linqing Depression in the junction of Hebei, Shandong and Henan Provinces and its exploration potential

    Fund Project: Supported by Science and Technology Project of Sinopec Corporation (No. JP19002)
More Information
  • Author Bio: GAO Nan'an, female, born in 1989, Ph.D., engineer, mainly engaged in basin analysis and geothermal geology research; E-mail: nanan.gao96@gmail.com
  • Corresponding author: WNG Xinwei, male, born in 1968, Ph.D., senior engineer, mainly engaged in structural geology and geothermal geology research; E-mail: wangxinwei.xxsy@sinopec.com 
  • This paper is the result of geothermal survey engineering.

    Objective

    Building genetic model of the geothermal system plays an important guiding role in the evaluation of the geothermal resources of the geothermal field and the later selection of favorable zones. Daming Sag is a secondary structural unit at the southern of Guantao Uplift in Linqing Sag, Bohai Bay Basin. The sandstone thermal reservoir of Guantao Formation can form a complete geothermal system.

    Methods

    Combining previous research results and regional geothermal drilling data, through analysis and research on the main geological factors of the "source, reservoir, migration, and cover", the conceptual model of the geothermal system was established in Daming Sag, Linqing Depression. On this basis, a evaluation of geothermal resources was carried out.

    Results

    The thermal reservoirs of the Guantao Formation are uniformly distributed in the area, the floor depth is between 1550-2000 m, the thickness of the reservoir is between 268-324m, the porosity is between 14%-32%, and the reservoir-thickness ratio can reach up to 70%. The geothermal wells drilled into the Guantao Formation in the area, its water temperature is about 54-60℃, and the water chemistry type is mainly Cl×SO4-Na. The upper Quaternary and Minghuazhen Formation strata have a geothermal gradient between 22-60℃/km, forming a good cap layer. The heat source comes from the high geothermal value background of the Cenozoic rift basin, about 52-57 mW/m2. The Linzhang-Daming fault in the south and the Guanxian fault in the east are favorable channels for the upward transportation of deep heat. The geothermal system receives the atmospheric precipitation replenishment from the Taihang Mountains in the west and the southwestern Luxinan uplift in the east. After being warmed by deep heat conduction and local heat convection, it is enriched in the reservoir.

    Conclusions

    The evaluation results of the geothermal resources in the Damingci Depression show that the sandstone geothermal system resources of the Guantao Formation are more than 127.42×108 GJ, the annual geothermal resources that can be exploited are 31.86×106 GJ equivalent to 1.09×106 t of standard coal. The annual exploitation of geothermal resources can meet the heating area over 3.14×107 m2, and the development potential is great.

  • 加载中
  • Cao Yingzhuo, Bao Zhidong, Lu Kai, Xu Shiqi, Wang Guiling, Yuan Shuqin, Ji Hancheng. 2021 Genetic model and main controlling factors of the Xiongxian geothermal field[J]. Acta Sedimentologica Sinica, 39(4): 863-872(in Chinese with English abstract).

    Google Scholar

    Craig H. 1961. Isotopic variations in meteoric waters[J]. Science, 133(3465): 1702-1703. doi: 10.1126/science.133.3465.1702

    CrossRef Google Scholar

    Cui Yang, Gao Shengping, Wei Yingying, Mu Haidong. 2013. Analysis of geothermal resources in Handan[J]. Science and Technology of West China, 12(12): 18-19(in Chinese with English abstract).

    Google Scholar

    He Zhiliang, Feng Jianyun, Zhang Ying, Li Pengwei. 2017. A tentative discussion on an evaluation system of geothermal unit ranking and classification in China[J]. Earth Science Frountiers, 24(3): 168-179(in Chinese with English abstract).

    Google Scholar

    Hua Jieming, Wang Zhenfeng. 2006. Utilization and development of geothermal resources in eastern Hanxing Plain (Southern Hebei Depression), Heibei Province[J]. Coal Geology of China, 18(1): 34-37(in Chinese with English abstract). doi: 10.3969/j.issn.1674-1803.2006.01.012

    CrossRef Google Scholar

    Jiang Guangzheng, Gao Peng, Rao Song, Zhang Linyou, Tang Xiaoyin, Huang Fang, Zhao Ping, Pang Zhonghe, He Lijuan, Hu Shengbiao, Wang Jiyang. 2016. Compilation of heat flow data in the continental area of China (4th edition)[J]. Chinese Journal of Geophysics, 59(8): 2892-2910(in Chinese with English abstract).

    Google Scholar

    Jing Chenghu. 2007. A Study on Geologic Features of Geothermal and its Exploitation and Utilization in the Eastern Plain of Handan[D]. Beijing: China University of Geosciences (Beijing).

    Google Scholar

    Lang Xujuan. 2016. The Thermal Structure and Geothermal Genesis Mechanism in Guide Basin[D]. Beijing: Chinese Academy of Geological Science.

    Google Scholar

    Liu Jianping, Wang Xinwen, Lu Yanwen. 2002. The Cenozoic extended basin characterand models in the east of Linqing[J]. Journal of Chengdu University of Technology, (5): 551-554(in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2002.05.014

    CrossRef Google Scholar

    Liu Jianping, Wang Xinwei, Wang Xinwen. 2004. Transition structures in Linqing depression[J]. Geological Science and Technology Information, 23(4): 51-54 (in Chinese with English abstract).

    Google Scholar

    Liu Jianrong, Song Xianfang, Yuan Guofu, Sun Xiaomin, Liu Xin, Wang Shiqin. 2009. Characteristics of δ18O in precipitation over eastern monsoon China and the water vapor sources[J]. Chinese Science Bulletin, 54(22): 3521-3531(in Chinese with English abstract). doi: 10.1360/csb2009-54-22-3521

    CrossRef Google Scholar

    Liu Xiangyang, Gong Hanhong. 2007. An evaluation of Handan city geothermal resources[J]. Coal Geology of China, (6): 45-48 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-1803.2007.06.016

    CrossRef Google Scholar

    Ran Zhijie, Peng Yuanqian, Meng Lipeng, Sun Lina, Wen Chao and Wang Yan. 2016. Active characteristics of the Linzhang-Daming Fault[J]. Technology for Earthquake Disaster Prevention, 11(2): 230-238(in Chinese with English abstract).

    Google Scholar

    Sánchez Navarro J Á, López P C, Perez-Garcia A. 2004. Evaluation of geothermal flow at the springs in Aragón (Spain), and its relation to geologic structure[J]. Hydrogeology Journal, 12(5): 601-609. doi: 10.1007/s10040-004-0330-8

    CrossRef Google Scholar

    Sun Hongli. 2015. The Bearing Features and Genetic Model for Geothermal Resources in Guanzhong Basin[D]. Beijing: China University of Geosciences (Beijing).

    Google Scholar

    Wang Guiling, Lin Wenjing. 2002. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 94(7): 1923-1937(in Chinese with English abstract).

    Google Scholar

    Wang Jiyang. 2015. Geothermics and its Application[M]. Beijing: Science Press, 1-6.

    Google Scholar

    Wang Xinwei, Wang Tinghao, Zhang Xuan, Mao Xiang, Luo Lu, Wang Di. 2019. Genetic mechanism of Xiwenzhuang geothermal field in Taiyuan Basin[J]. Earth Science, 44(3): 1042-1056(in Chinese with English abstract).

    Google Scholar

    Wang Yang, Wang Jiyang, Xiong Liangping, Deng Jinfu. 2001. Lithospheric geothermics of major geotectonic units in China mainland[J]. Acta Geoscientia Sinica, 22(1): 17-22 (in Chinese with English abstract). doi: 10.3321/j.issn:1006-3021.2001.01.004

    CrossRef Google Scholar

    Wei Wenbo, Ye Gaofeng, Jin Sheng, Deng Ming, Jin Jianen, Peng Zhiqiang, Lin Xing, Song Shilei, Tang Baoshan, Qu Shuanzhu, Chen Kai, Yang Hongwei, Li Guoqiang. 2008. Geoelectric structure of lithosphere beneath eastern North China: Features of a thinned lithosphere from magnetotelluric soundings[J]. Earth Science Frontiers, 15(4): 204-216(in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60055-X

    CrossRef Google Scholar

    Xu Huaming, Zhou Bin, Geng Shijiang, Hou Pingshu, Li Guangyong. 2010. Segmentation characteristics and activity of Cixian -Daming fault[J]. North China Earthquake Sciences, 28(1): 1-7(in Chinese with English abstract). doi: 10.3969/j.issn.1003-1375.2010.01.001

    CrossRef Google Scholar

    Yuan Tongxing, Liu Dongsheng. 2000. A preliminary discussion analysis of geotherm-geological conditions in the eastern plain of Handan city[J]. Acta Geoscientia Sinica, 21(2): 177-181(in Chinese with English abstract). doi: 10.3321/j.issn:1006-3021.2000.02.014

    CrossRef Google Scholar

    Zhang Ying, Feng Jianyun, He Zhiliang, Li Pengwei. 2017. Classification of geothermal system and their formation key factors[J]. Earth Science Frountiers, 24(3): 190-198(in Chinese with English abstract).

    Google Scholar

    Zhu Huanlai. 2011. Research on the Sedimentary Geothermal Resources in North Songliao Basin[D]. Daqing: Northeast Petroleum University(in Chinese with English abstract).

    Google Scholar

    曹瑛倬, 鲍志东, 鲁锴, 徐世琦, 王贵玲, 袁淑琴, 季汉成. 2021. 冀中坳陷雄县地热田主控因素及成因模式[J]. 沉积学报, 39(4): 863-872.

    Google Scholar

    崔阳, 高生平, 魏莹莹, 母海东. 2013. 邯郸市地热资源概况分析[J]. 中国西部科技, 12(12): 18-19.

    Google Scholar

    何治亮, 冯建赟, 张英, 李鹏威. 2017. 试论中国地热单元分级分类评价体系[J]. 地学前缘, 24(3): 168-179. doi: 10.13745/j.esf.2017.03.015

    CrossRef Google Scholar

    华解明, 王真奉. 2006. 河北省邯邢东部平原区(冀南凹陷)地热资源的利用与开发[J]. 中国煤田地质, 18(1): 34-37.

    Google Scholar

    姜光政, 高堋, 饶松, 张林友, 唐晓音, 黄方, 赵平, 庞忠和, 何丽娟, 胡圣标, 汪集旸. 2016. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报, 59(8): 2892-2910.

    Google Scholar

    景成虎. 2007. 邯郸东部平原地区地热地质特征及开发利用研究[D]. 北京: 中国地质大学(北京).

    Google Scholar

    郎旭娟. 2016. 贵德盆地热结构及地热成因机制[D]. 北京: 中国地质科学院.

    Google Scholar

    刘剑平, 汪新文, 鲁言文. 2002. 临清地区东部新生代伸展构造特征及盆地伸展模式[J]. 成都理工学院学报, (5): 551-554. doi: 10.3969/j.issn.1671-9727.2002.05.014

    CrossRef Google Scholar

    刘剑平, 汪新伟, 汪新文. 2004. 临清坳陷变换构造研究[J]. 地质科技情报, 23(4): 51-54.

    Google Scholar

    刘向阳, 龚汉宏. 2007. 邯郸市地热资源评价[J]. 中国煤田地质, (6): 45-48.

    Google Scholar

    柳鉴容, 宋献方, 袁国富, 孙晓敏, 刘鑫, 王仕琴. 2009. 中国东部季风区大气降水δ18O的特征及水汽来源[J]. 科学通报, 54(22): 3521-3531.

    Google Scholar

    冉志杰, 彭远黔, 孟立朋, 孙丽娜, 温超, 王燕. 2016. 临漳-大名断裂活动特征[J]. 震灾防御技术, 11(2): 230-238.

    Google Scholar

    孙红丽. 2015. 关中盆地地热资源赋存特征及成因模式研究[D]. 北京: 中国地质大学(北京).

    Google Scholar

    王贵玲, 蔺文静. 2020. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 94(7): 1923-1937.

    Google Scholar

    汪集旸. 2015. 地热学及其应用[M]. 北京: 科学出版社, 1-6.

    Google Scholar

    汪新伟, 王婷灏, 张瑄, 毛翔, 罗璐, 王迪, 武明辉. 2019. 太原盆地西温庄地热田的成因机制[J]. 地球科学, 44(3): 1042-1056.

    Google Scholar

    汪洋, 汪集, 熊亮萍, 邓晋福. 2001. 中国大陆主要地质构造单元岩石圈地热特征[J]. 地球学报, (1): 17-22.

    Google Scholar

    魏文博, 叶高峰, 金胜, 邓明, 景建恩, 彭志强, 林昕, 宋石磊, 唐宝山, 屈栓柱, 陈凯, 杨宏伟, 李国强. 2008. 华北地区东部岩石圈导电性结构研究—减薄的华北岩石圈特点[J]. 地学前缘, (4): 204-216.

    Google Scholar

    许华明, 周斌, 耿师江, 侯平舒, 李广勇. 2010. 磁县大名断层分段特征及活动性[J]. 华北地震科学, 28(1): 1-7.

    Google Scholar

    袁同星, 刘东生. 2000. 邯郸市东部平原区地热地质条件初析[J]. 地球学报, 21(2): 177-181.

    Google Scholar

    张英, 冯建赟, 何治亮, 李鹏威. 2017. 地热系统类型划分与主控因素分析[J]. 地学前缘, 24(3): 190-198.

    Google Scholar

    朱焕来. 2011. 松辽盆地北部沉积盆地型地热资源研究[D]. 大庆: 东北石油大学.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(4)

Article Metrics

Article views(1502) PDF downloads(99) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint