Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 6
Article Contents

ZHAO Ruihan, HAN Zhiwei, FU Yong. A Review of Research Progress of Isotope Technology in Tracing Pollution Process in the Mine Environment[J]. Rock and Mineral Analysis, 2022, 41(6): 947-961. doi: 10.15898/j.cnki.11-2131/td.202203100049
Citation: ZHAO Ruihan, HAN Zhiwei, FU Yong. A Review of Research Progress of Isotope Technology in Tracing Pollution Process in the Mine Environment[J]. Rock and Mineral Analysis, 2022, 41(6): 947-961. doi: 10.15898/j.cnki.11-2131/td.202203100049

A Review of Research Progress of Isotope Technology in Tracing Pollution Process in the Mine Environment

More Information
  • BACKGROUND

    With mining activities taking place on a global scale, the concern for environmental issues within and around mines continues to increase. The advent of multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) has promoted the geochemical study of isotopes and has led to the widespread use of isotope tracing techniques to investigate various issues in the mining environment.

    OBJECTIVES

    To systematically summarize the various types of studies currently conducted on the application of isotope tracing technology in mining environments, with the aim of highlighting the importance of the application of isotope tracing technology in complex mining environments and the diversity of scientific problems it can solve.

    METHODS

    Data published by scholars at home and abroad by July 2022 has been collected and compiled on testing and analyzing the supply source/connection of mine water body, sulfate/carbonate source and the cause of acid mine wastewater (AMD), migration and transformation of mining elements, different sources and contribution rates of heavy metal pollution with the help of isotope tracer technology. The study area covers more than 40 regions in 20 countries.

    RESULTS

    It is found that hydrogen and oxygen isotope tracing techniques in water bodies are effective tools for mine water source analysis, hydraulic linkage studies and AMD source identification. Sulfate sulfur and oxygen isotope tracing techniques provide important support for the study of sulfate sources in mine environments, AMD acidification processes and pollution, bacterial sulfate reduction and elemental migration transformation. Heavy metal isotope (Pb, Cd, Zn, Hg isotopes) tracing technology is an effective way to investigate the sources of metal pollution in mines and nearby environments and the contribution of different sources.

    CONCLUSIONS

    Although isotope techniques play an important role in resolving the sources of environmental pollutants in mines and the mechanisms of migration and transformation of characteristic pollutants and revealing the hydrogeochemical processes in mines, most of the current studies are limited to the application of single/few isotopes for short time tracing studies of environmental media in mines. Therefore, further development of multi-isotope tracing technology is needed in the future, as well as long-term and continuous monitoring and investigation of various problems in the mine environment. New and effective methods for pollution prevention and control are also proposed.

  • 加载中
  • [1] 李玉喜, 修艳敏. 关于矿产资源勘查开采过程中关键节点的探讨[J]. 中国矿业, 2021, 30(S2): 31-36.

    Google Scholar

    Li Y X, Xiu Y M. Discussion on the key nodes in the process of mineral resources exploration and mining[J]. China Mining Magazine, 2021, 30(S2): 31-36.

    Google Scholar

    [2] Kitula A G N. The environmental and socio-economic impacts of mining on local livelihoods in Tanzania: A case study of Geita District[J]. Journal of Cleaner Production, 2006, 14(3-4): 405-414. doi: 10.1016/j.jclepro.2004.01.012

    CrossRef Google Scholar

    [3] Dudka S, Adriano D C. Environmental impacts of metal ore mining and processing: A review[J]. Journal of Environmental Quality, 1997, 26(3): 590-602.

    Google Scholar

    [4] 刘宏磊. 矿山环境修复治理和开发利用模式的理论与实践研究[D]. 北京: 中国矿业大学, 2020.

    Google Scholar

    Liu H L. Theoretical and practical research on the model of mine environment remediation and development and utilization[D]. Beijing: China University of Mining and Technology, 2020.

    Google Scholar

    [5] Cao J, Xie C Y, Hou Z R. Ecological evaluation of heavy metal pollution in the soil of Pb-Zn mines[J]. Ecotoxicology, 2022, 31: 259-270. doi: 10.1007/s10646-021-02505-3

    CrossRef Google Scholar

    [6] 李小倩, 张彬, 周爱国, 等. 酸性矿山废水对合山地下水污染的硫氧同位素示踪[J]. 水文地质工程地质, 2014, 41(6): 103-109. doi: 10.16030/j.cnki.issn.1000-3665.2014.06.019

    CrossRef Google Scholar

    Li X Q, Zhang B, Zhou A G, et al. Sulfur-oxygen isotope tracing of groundwater pollution in Heshan by acid mine wastewater[J]. Hydrogeology and Engineering Geology, 2014, 41(6): 103-109. doi: 10.16030/j.cnki.issn.1000-3665.2014.06.019

    CrossRef Google Scholar

    [7] Marco D, Barbara S, Riccardo P, et al. Oxygen and hydrogen isotopic composition of waters in a past-mining area of southern Apuan Alps (Italy): Hydrogeological characterization and implications on the fate of potentially toxic elements[J]. Journal of Geochemical Exploration, 2019, 205(C): 106338.

    Google Scholar

    [8] 温冰. 湖南锡矿山水环境中锑来源及迁移转化的多元同位素解析[D]. 武汉: 中国地质大学(武汉), 2017.

    Google Scholar

    Wen B. Multiple isotope analysis of antimony sources and transport transformations in the water environment of Hunan tin mines[D]. Wuhan: China University of Geosciences (Wuhan), 2017.

    Google Scholar

    [9] Chen S, Zhang C P, Qiu L J, et al. Biogeochemical transformation of sulfur and its effects on arsenic mobility in paddy fields polluted by acid mine drainage[J]. Chemosphere, 2022, 293: 133605. doi: 10.1016/j.chemosphere.2022.133605

    CrossRef Google Scholar

    [10] Zhang X B, Li X, Gao X B. Hydrochemistry and coal mining activity induced karst water quality degradation in the Niangziguan karst water system, China[J]. Environmental Science and Pollution Research, 2016, 23: 6286-6299. doi: 10.1007/s11356-015-5838-z

    CrossRef Google Scholar

    [11] Urey H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society, 1947: 562-581. doi: 10.1039/jr9470000562

    CrossRef Google Scholar

    [12] 黄方, 田笙谕. 若干金属稳定同位素体系的研究进展: 以中国科大实验室为例[J]. 矿物岩石地球化学通报, 2018, 37(5): 793-811.

    Google Scholar

    Huang F, Tian S Y. Progress in the study of some metal stable isotope systems: An example from the laboratory of China University of Science and Technology[J]. Mineral and Rock Geochemistry Bulletin, 2018, 37(5): 793-811.

    Google Scholar

    [13] Johnson C M, Beard B L, Albarede F. Overview and general concepts[J]. Geochemistry of Non-Traditional Stable Isotopes, 2004, 55: 1-24.

    Google Scholar

    [14] 陈陆望, 桂和荣, 许光泉, 等. 皖北矿区煤层底板岩溶水氢氧稳定同位素特征[J]. 合肥工业大学学报(自然科学版), 2003(3): 374-378. doi: 10.3969/j.issn.1003-5060.2003.03.013

    CrossRef Google Scholar

    Chen L W, Gui H R, Xu G Q, et al. Hydrogen-oxygen stable isotope characteristics of karst water at the bottom of coal seam in North Anhui mining area[J]. Journal of Hefei University of Technology (Natural Science Edition), 2003(3): 374-378. doi: 10.3969/j.issn.1003-5060.2003.03.013

    CrossRef Google Scholar

    [15] 朱红艳, 任佳, 杨强, 等. 基于氢氧稳定同位素组成解析庐江矾矿酸性废水来源[J]. 长江流域资源与环境, 2021, 30(12): 2938-2948.

    Google Scholar

    Zhu H Y, Ren J, Yang Q, et al. Hydrogen and oxygen stable isotope composition analysis of acidic wastewater from Lujiangalunite mine[J]. Yangtze River Basin Resources and Environment, 2021, 30(12): 2938-2948.

    Google Scholar

    [16] 闫朋阳. 西南地区某岩溶水矿山地下水同位素分析[J]. 陕西水利, 2018(1): 110-112, 115. doi: 10.16747/j.cnki.cn61-1109/tv.2018.01.040

    CrossRef Google Scholar

    Yan P Y. Groundwater isotope analysis of a karst water mine in southwest China[J]. Shaanxi Water Resources, 2018(1): 110-112, 115. doi: 10.16747/j.cnki.cn61-1109/tv.2018.01.040

    CrossRef Google Scholar

    [17] de Carvalho Filho C A, Moreira R M, Branco O E A, et al. Combined hydrochemical, isotopic, and multivariate statistics techniques to assess the effects of discharges from a uranium mine on water quality in neighboring streams[J]. Environmental Earth Sciences, 2017, 76: 830. doi: 10.1007/s12665-017-7165-9

    CrossRef Google Scholar

    [18] Qin W J, Han D M, Song X F, et al. Environmental isotopes (δ18O, δ2H, 222Rn) and hydrochemical evidence for understanding rainfall-surface water-groundwater transformations in a polluted karst area[J]. Journal of Hydrology, 2021, 592: 125748. doi: 10.1016/j.jhydrol.2020.125748

    CrossRef Google Scholar

    [19] Wang J, Zhou Y, Dong X, et al. Temporal sedimentary record of thallium pollution in an urban lake: An emerging thallium pollution source from copper metallurgy[J]. Chemosphere, 2020, 242: 125172. doi: 10.1016/j.chemosphere.2019.125172

    CrossRef Google Scholar

    [20] Lermi A, Sunkari E D. Geochemistry, risk assessment, and Pb isotopic evidence for sources of heavy metals in stream sediments around the Ulukisla Basin, Nigde, southern Turkey[J]. Turkish Journal of Earth Sciences, 2020, 29(7): 1167-1188. doi: 10.3906/yer-2001-9

    CrossRef Google Scholar

    [21] 汪福顺, 刘丛强, 梁小兵, 等. 矿山活动影响下湖泊沉积物-水界面硫酸盐还原作用的微生物及其同位素研究[C]//中国矿物岩石地球化学学会第十届学术年会论文集, 2005: 347.

    Google Scholar

    Wang F S, Liu C Q, Liang X B, et al. Microbial and isotopic studies of sulfate reduction at the lake sediment-water interface under the influence of mining activities[C]//Proceedings of the 10th Annual Meeting of the Chinese Society of Mineral and Rock Geochemistry, 2005: 347.

    Google Scholar

    [22] Ruhela M, Sharma K, Bhutiani R, et al. GIS-based impact assessment and spatial distribution of air and water pollutants in mining area[J]. Environmental Science and Pollution Research, 2022, 29: 31486-31500. doi: 10.1007/s11356-021-18009-w

    CrossRef Google Scholar

    [23] Li J, Li Z, Brandis K J, et al. Tracing geochemical pollutants in stream water and soil from mining activity in an alpine catchment[J]. Chemosphere, 2020, 242: 125167. doi: 10.1016/j.chemosphere.2019.125167

    CrossRef Google Scholar

    [24] Ta D, Cao S, Steyl G, et al. Prediction of groundwater inflow into an iron mine: A case study of the Thach Khe iron mine, Vietnam[J]. Mine Water and the Environment, 2019, 38(2): 310-324. doi: 10.1007/s10230-019-00595-4

    CrossRef Google Scholar

    [25] 汪敬忠, 吴敬禄, 曾海鳌, 等. 内蒙古河套平原水体同位素及水化学特征[J]. 地球科学与环境学报, 2013, 35(4): 104-112. doi: 10.3969/j.issn.1672-6561.2013.04.012

    CrossRef Google Scholar

    Wang J Z, Wu J L, Zeng H A, et al. Isotopic and hydrochemical characteristics of water bodies in the Inner Mongolia Loop Plain[J]. Journal of Earth Science and Environment, 2013, 35(4): 104-112. doi: 10.3969/j.issn.1672-6561.2013.04.012

    CrossRef Google Scholar

    [26] 高娟琴, 于扬, 王登红, 等. 新疆阿勒泰地区地表水体氢氧同位素组成及空间分布特征[J]. 岩矿测试, 2021, 40(3): 397-407. doi: 10.15898/j.cnki.11-2131/td.202101140007

    CrossRef Google Scholar

    Gao J Q, Yu Y, Wang D H, et al. Hydrogen and oxygen isotope composition and spatial distribution of surface waters in the Altay region of Xinjiang[J]. Rock and Mineral Analysis, 2021, 40(3): 397-407. doi: 10.15898/j.cnki.11-2131/td.202101140007

    CrossRef Google Scholar

    [27] 查君珍, 姜春露, 陈星, 等. 淮南采煤沉陷区积水水文地球化学及氢氧稳定同位素特征[J]. 湖泊科学, 2021, 33(6): 1742-1752.

    Google Scholar

    Zha J Z, Jiang C L, Chen X, et al. Hydrogeochemistry and hydrogen-oxygen stable isotope characteristics of ponded water in Huainan coal mining subsidence area[J]. Journal of Lake Science, 2021, 33(6): 1742-1752.

    Google Scholar

    [28] Zhang J, Chen L W, Hou X W, et al. Multi-isotopes and hydrochemistry combined to reveal the major factors affecting Carboniferous groundwater evolution in the Huaibei coalfield, North China[J]. Science of the Total Environment, 2021, 791: 148420. doi: 10.1016/j.scitotenv.2021.148420

    CrossRef Google Scholar

    [29] LeDoux S T M, Szynkiewicz A, Faiia A M, et al. Chemical and isotope compositions of shallow groundwater in areas impacted by hydraulic fracturing and surface mining in the central Appalachian Basin, eastern United States[J]. Applied Geochemistry, 2016, 71: 73-85. doi: 10.1016/j.apgeochem.2016.05.007

    CrossRef Google Scholar

    [30] Gammons C H, Duaime T E, Parker S R, et al. Geochemistry and stable isotope investigation of acid mine drainage associated with abandoned coal mines in central Montana, USA[J]. Chemical Geology, 2010, 269(1-2): 100-112. doi: 10.1016/j.chemgeo.2009.05.026

    CrossRef Google Scholar

    [31] Gammons C H, Brown A, Poulson S R, et al. Using stable isotopes (S, O) of sulfate to track local contamination of the Madison karst aquifer, Montana, from abandoned coal mine drainage[J]. Applied Geochemistry, 2013, 31(2): 228-238.

    Google Scholar

    [32] 张磊, 秦小光, 刘嘉麒, 等. 淮南采煤沉陷区积水来源的氢氧稳定同位素证据[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1502-1514. doi: 10.13278/j.cnki.jjuese.201505205

    CrossRef Google Scholar

    Zhang L, Qin X G, Liu J Q, et al. Hydrogen-oxygen stable isotope evidence for the source of ponded water in Huainan coal mining subsidence area[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(5): 1502-1514. doi: 10.13278/j.cnki.jjuese.201505205

    CrossRef Google Scholar

    [33] Salifu M, Hällström L, Aiglsperger T, et al. A simple model for evaluating isotopic (18O, 2H and 87Sr/86Sr) mixing calculations of mine—Impacted surface waters[J]. Journal of Contaminant Hydrology, 2020, 232: 103640. doi: 10.1016/j.jconhyd.2020.103640

    CrossRef Google Scholar

    [34] Huang H, Chen Z H, Wang T, et al. Origins and mixing contributions of deep warm groundwater in a carbonate-hosted ore deposit, Sichuan—Yunnan—Guizhou Pb-Zn triangle, southwestern China[J]. Journal of Hydrology, 2020, 590: 125400. doi: 10.1016/j.jhydrol.2020.125400

    CrossRef Google Scholar

    [35] Migaszewski Z M, Galuszka A, Michalik A, et al. The use of stable sulfur, oxygen and hydrogen isotope ratios as geochemical tracers of sulfates in the Podwisniówka acid drainage area (south-central Poland)[J]. Aquatic Geochemistry, 2013, 19(4): 261-280. doi: 10.1007/s10498-013-9194-7

    CrossRef Google Scholar

    [36] Gu H Y, Ma F S, Guo J, et al. Assessment of water sources and mixing of groundwater in a coastal mine: The Sanshandao gold mine, China[J]. Mine Water and the Environment, 2018, 37: 351-365. doi: 10.1007/s10230-017-0458-0

    CrossRef Google Scholar

    [37] 葛涛, 储婷婷, 刘桂建, 等. 淮南煤田潘谢矿区深层地下水氢氧同位素特征分析[J]. 中国科学技术大学学报, 2014, 44(2): 112-118, 170. doi: 10.3969/j.issn.0253-2778.2014.02.006

    CrossRef Google Scholar

    Ge T, Chu T T, Liu G J, et al. Hydrogen-oxygen isotope characterization of deep groundwater in Panxie mine, Huainan coalfield[J]. Journal of the University of Science and Technology of China, 2014, 44(2): 112-118, 170. doi: 10.3969/j.issn.0253-2778.2014.02.006

    CrossRef Google Scholar

    [38] 黄荷, 陈植华, 王涛, 等. 岩溶矿区水文地球化学特征及其水源指示意义[J]. 水文地质工程地质, 2019, 46(1): 19-26. doi: 10.16030/j.cnki.issn.1000-3665.2019.01.03

    CrossRef Google Scholar

    Huang H, Chen Z H, Wang T, et al. Hydrogeochemical characteristics of karst mining areas and their water source indication significance[J]. Hydrogeology and Engineering Geology, 2019, 46(1): 19-26. doi: 10.16030/j.cnki.issn.1000-3665.2019.01.03

    CrossRef Google Scholar

    [39] 周小平, 彭吟雪, 马雷, 等. 氢氧同位素对淮南潘集矿区地下水的指示作用[J]. 合肥工业大学学报(自然科学版), 2019, 42(4): 536-540. doi: 10.3969/j.issn.1003-5060.2019.04.018

    CrossRef Google Scholar

    Zhou X P, Peng Y X, Ma L, et al. Indication of hydrogen and oxygen isotopes on groundwater in Panji mining area, Huainan[J]. Journal of Hefei University of Technology (Natural Science Edition), 2019, 42(4): 536-540. doi: 10.3969/j.issn.1003-5060.2019.04.018

    CrossRef Google Scholar

    [40] Doveri M, Natali S, Franceschi L, et al. Carbonate aquifers threatened by legacy mining: Hydrodynamics, hydrochemistry, and water isotopes integrated approach for spring water management[J]. Journal of Hydrology, 2021, 593: 125850. doi: 10.1016/j.jhydrol.2020.125850

    CrossRef Google Scholar

    [41] Roesler A J, Gammons C H, Druschel G K, et al. Geochemistry of flooded underground mine workings influenced by bacterial sulfate reduction[J]. Aquatic Geochemistry, 2007, 13: 211-235. doi: 10.1007/s10498-007-9017-9

    CrossRef Google Scholar

    [42] Wang Z J, Yin J J, Pu J B, et al. Integrated understanding of the critical zone processes in a subtropical karst watershed (Qingmuguan, southwestern China): Hydrochemical and isotopic constraints[J]. Science of the Total Environment, 2020, 749: 141257. doi: 10.1016/j.scitotenv.2020.141257

    CrossRef Google Scholar

    [43] 高建飞, 徐衍明, 范昌福, 等. 元素分析仪-气体同位素质谱法分析硫酸钙样品的硫同位素组成[J]. 岩矿测试, 2020, 39(1): 53-58. doi: 10.15898/j.cnki.11-2131/td.201908120128

    CrossRef Google Scholar

    Gao J F, Xu Y M, Fan C F, et al. Sulfur isotope composition of calcium sulfate samples by elemental analyzer-gas isotope mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 53-58. doi: 10.15898/j.cnki.11-2131/td.201908120128

    CrossRef Google Scholar

    [44] Sun J, Kobayashi T, Strosnider W H J, et al. Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters[J]. Journal of Hydrology, 2017, 551: 245-252. doi: 10.1016/j.jhydrol.2017.06.006

    CrossRef Google Scholar

    [45] Banks D, Boyce A J, Burnside N M, et al. On the common occurrence of sulphate with elevated δ34S in European mine waters: Sulphides, evaporites or seawater?[J]. International Journal of Coal Geology, 2020, 232: 103619. doi: 10.1016/j.coal.2020.103619

    CrossRef Google Scholar

    [46] Seibert S, Descourvieres C, Skrzypek G, et al. Model-based analysis of δ34S signatures to trace sedimentary pyrite oxidation during managed aquifer recharge in a heterogeneous aquifer[J]. Journal of Hydrology, 2017, 548: 368-381. doi: 10.1016/j.jhydrol.2017.02.030

    CrossRef Google Scholar

    [47] Haubrich F, Tichomirowa M. Sulfur and oxygen isotope geo-chemistry of acid mine drainage—The polymetallic sulfide deposit "Himmelfahrt Fundgrube" in Freiberg (Germany)[J]. Isotopes in Environmental and Health Studies, 2002, 38(2): 121-138.

    Google Scholar

    [48] Junghans M, Tichomirowa M. Using sulfur and oxygen isotope data for sulfide oxidation assessment in the Freiberg polymetallic sulfide mine[J]. Applied Geochemistry, 2009, 24(11): 2034-2050. doi: 10.1016/j.apgeochem.2009.08.001

    CrossRef Google Scholar

    [49] Tichomirowa M, Heidel C, Junghans M, et al. Sulfate and strontium water source identification by O, S and Sr isotopes and their temporal changes (1997—2008) in the region of Freiberg, central-eastern Germany[J]. Chemical Geology, 2010, 276(1-2): 104-118. doi: 10.1016/j.chemgeo.2010.06.004

    CrossRef Google Scholar

    [50] Migaszewski Z M, Galuszka A, Halas S, et al. Chemical and isotopic variations in the Wisniówka Mala mine pit water, Holy Cross Mountains (south-central Poland)[J]. Environmental Geology, 2009, 57(1): 29-40. doi: 10.1007/s00254-008-1279-z

    CrossRef Google Scholar

    [51] 任坤, 潘晓东, 兰干江, 等. 硫氧同位素解析典型岩溶地下河流域硫酸盐季节变化特征和来源[J]. 环境科学, 2021, 42(9): 4267-4274. doi: 10.13227/j.hjkx.202101225

    CrossRef Google Scholar

    Ren K, Pan X D, Lan G J, et al. Sulfur and oxygen isotope analysis of the seasonal variation and source of sulfate in a typical karst underground river basin[J]. Environmental Science, 2021, 42(9): 4267-4274. doi: 10.13227/j.hjkx.202101225

    CrossRef Google Scholar

    [52] Zhang G P, Liu C Q, Yang Y G, et al. Characterization of heavy metals and sulphur isotope in water and sediments of a mine-tailing area rich in carbonate[J]. Water Air and Soil Pollution, 2004, 155(1-4): 51-62. doi: 10.1023/B:WATE.0000026517.71668.0b

    CrossRef Google Scholar

    [53] Miao Z, Carroll K C, Brusseau M L. Characterization and quantification of groundwater sulfate sources at a mining site in an arid climate: The Monument Valley site in Arizona, USA[J]. Journal of Hydrology, 2013, 504(22): 207-215.

    Google Scholar

    [54] Killingsworth B A, Bao H. Significant human impact on the flux and delta S-34 of sulfate from the largest river in North America[J]. Environmental Science & Technology, 2015, 49(8): 4851-4860.

    Google Scholar

    [55] Li Q, Wu P, Zha X, et al. Effects of mining activities on evolution of water chemistry in coal-bearing aquifers in karst region of midwestern Guizhou, China: Evidences from δ13C of dissolved inorganic carbon and δ34S of sulfate[J]. Environmental Science and Pollution Research, 2018, 25: 18038-18048. doi: 10.1007/s11356-018-1969-3

    CrossRef Google Scholar

    [56] Knoller K, Fauville A, Mayer B, et al. Sulfur cycling in an acid mining lake and its vicinity in Lusatia, Germany[J]. Chemical Geology, 2004, 204(3-4): 303-323. doi: 10.1016/j.chemgeo.2003.11.009

    CrossRef Google Scholar

    [57] Zheng L G, Chen X, Dong X L, et al. Using δ34S-SO4 and δ18O-SO4 to trace the sources of sulfate in different types of surface water from the Linhuan coal-mining subsidence area of Huaibei, China[J]. Ecotoxicology and Environmental Safety, 2019, 181: 231-240. doi: 10.1016/j.ecoenv.2019.06.001

    CrossRef Google Scholar

    [58] Ren K, Zeng J, Liang J P, et al. Impacts of acid mine drainage on karst aquifers: Evidence from hydrogeo-chemistry, stable sulfur and oxygen isotopes[J]. Science of the Total Environment, 2021, 761: 143223. doi: 10.1016/j.scitotenv.2020.143223

    CrossRef Google Scholar

    [59] Denimal S, Tribovillard N, Barbecot F, et al. Leaching of coal-mine tips (Nord-Pas-de-Calais coal basin, France) and sulphate transfer to the chalk aquifer: Example of acid mine drainage in a buffered environment[J]. Environmental Geology, 2002, 42(8): 966-981. doi: 10.1007/s00254-002-0602-3

    CrossRef Google Scholar

    [60] Sun J, Kobayashi T, Strosnider W H J, et al. Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters[J]. Journal of Hydrology, 2017, 551: 245-252. doi: 10.1016/j.jhydrol.2017.06.006

    CrossRef Google Scholar

    [61] Chen X, Zheng L G, Dong X L, et al. Sources and mixing of sulfate contamination in the water environment of a typical coal mining city, China: Evidence from stable isotope characteristics[J]. Environmental Geochemistry and Health, 2020, 42(9): 2865-2879. doi: 10.1007/s10653-020-00525-2

    CrossRef Google Scholar

    [62] 陈星. 淮北临涣矿区地表水硫酸盐分布特征及来源解析[D]. 合肥: 安徽大学, 2019.

    Google Scholar

    Chen X. Characterization of sulfate distribution and source analysis in surface water of Linhuan mine area in Huabei[D]. Hefei: Anhui University, 2019.

    Google Scholar

    [63] Migaszewski Z M, Gałuszka A, Dołęgowska S. Stable isotope geochemistry of acid mine drainage from the Wisniówka area (south-central Poland)[J]. Applied Geochemistry, 2018, 95: 45-56. doi: 10.1016/j.apgeochem.2018.05.015

    CrossRef Google Scholar

    [64] Li X Q, Pan G F, Zhou A G, et al. Stable sulfur and oxygen isotopes of sulfate as tracers of antimony and arsenic pollution sources related to antimony mine activities in an impacted river[J]. Applied Geochemistry, 2022, 142: 105351. doi: 10.1016/j.apgeochem.2022.105351

    CrossRef Google Scholar

    [65] Migaszewski Z M, Gałuszka A, Dołęgowska S, et al. Asse-ssing the impact of Serwis mine tailings site on farmers' wells using element and isotope signatures (Holy Cross Mountains, south-central Poland)[J]. Environmental Earth Sciences, 2015, 74: 629-647. doi: 10.1007/s12665-015-4067-6

    CrossRef Google Scholar

    [66] Makhathini T P, Mulopo J, Bakare B F. Performance assessment of sulfidogenic fluidized-bed reactor for cotreating of acid mine and pharmaceutical-containing wastewater[J]. International Journal of Environmental Science and Technology, 2022.

    Google Scholar

    [67] Sheridan C, Akcil A, Kappelmeyer U, et al. Chapter 6—Current methods for the remediation of acid mine drainage including continuous removal of metals from wastewater and mine dump[M]//Bio-Geotechnologies for Mine Site Rehabilitation. Elsevier, 2018: 103-114.

    Google Scholar

    [68] Chen G, Ye Y C, Yao N, et al. A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage[J]. Journal of Cleaner Production, 2021, 329: 129666. doi: 10.1016/j.jclepro.2021.129666

    CrossRef Google Scholar

    [69] Tum S, Toda K, Matsui T. Seasonal effects of natural atten-uation on drainage contamination from artisanal gold mining, Cambodia: Implication for passive treatment[J]. Science of the Total Environment, 2022, 806(1): 150398.

    Google Scholar

    [70] Sun J, Takahashi Y, Strosnider W H J, et al. Tracing and quantifying contributions of end members to karst water at a coalfield in southwest China[J]. Chemosphere, 2019, 234: 777-788. doi: 10.1016/j.chemosphere.2019.06.066

    CrossRef Google Scholar

    [71] Tomiyama S, Igarashi T, Tabelin C B, et al. Acid mine drainage sources and hydrogeochemistry at the Yatani mine, Yamagata, Japan: A geochemical and isotopic study[J]. Journal of Contaminant Hydrology, 2019, 225: 103502. doi: 10.1016/j.jconhyd.2019.103502

    CrossRef Google Scholar

    [72] 吴攀, 刘丛强, 张国平, 等. 矿山环境地表水系的硫同位素研究——以贵州赫章后河为例[J]. 矿物岩石地球化学通报, 2007, 26(3): 224-227. doi: 10.3969/j.issn.1007-2802.2007.03.005

    CrossRef Google Scholar

    Wu P, Liu C Q, Zhang G P, et al. Sulfur isotope study of surface water system in mining environment: The case of Houhe River, Hezhang, Guizhou[J]. Mineral and Rock Geochemistry Bulletin, 2007, 26(3): 224-227. doi: 10.3969/j.issn.1007-2802.2007.03.005

    CrossRef Google Scholar

    [73] 曾祥颖, 韩志伟, 吴攀, 等. 锑矿开采条件下矿井水酸化过程分析[J]. 地球与环境, 2020, 48(1): 30-37. doi: 10.14050/j.cnki.1672-9250.2020.48.007

    CrossRef Google Scholar

    Zeng X Y, Han Z W, Wu P, et al. Analysis of mine water acidification process under antimony mining conditions[J]. Earth and Environment, 2020, 48(1): 30-37. doi: 10.14050/j.cnki.1672-9250.2020.48.007

    CrossRef Google Scholar

    [74] Song K, Wang F, Peng Y, et al. Construction of a hydro-geochemical conceptual model and identification of the groundwater pollution contribution rate in a pyrite mining area[J]. Environmental Pollution, 2022, 305: 119327. doi: 10.1016/j.envpol.2022.119327

    CrossRef Google Scholar

    [75] Butler T W. Isotope geochemistry of drainage from an acid mine impaired watershed, Oakland, California[J]. Applied Geochemistry, 2007, 22(7): 1416-1426. doi: 10.1016/j.apgeochem.2007.01.009

    CrossRef Google Scholar

    [76] Vengosh A, Lindberg T T, Merola B R, et al. Isotopic imprints of mountaintop mining contaminants[J]. Environmental Science & Technology, 2013, 47(17): 10041-10048.

    Google Scholar

    [77] Li X Q, Zhou A G, Gan Y Q, et al. Controls on the δ34S and δ18O of dissolved sulfate in the Quaternary aquifers of the North China Plain[J]. Journal of Contaminant Hydrology, 2011, 400(3-4): 312-322.

    Google Scholar

    [78] Church C D, Wilkin R T, Alpers C N, et al. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water[J]. Geochemical Transactions, 2007, 8: 10. doi: 10.1186/1467-4866-8-10

    CrossRef Google Scholar

    [79] Gammons C H, Snyder D M, Poulson S R, et al. Geochemistry and stable isotopes of the flooded underground mine workings of Butte, Montana[J]. Economic Geology, 2009, 104(8): 1213-1234. doi: 10.2113/gsecongeo.104.8.1213

    CrossRef Google Scholar

    [80] Sun J, Tang C, Wu P, et al. Hydrogeochemical characteristics of streams with and without acid mine drainage impacts: A paired catchment study in karst geology, SW China[J]. Journal of Contaminant Hydrology, 2013, 504: 115-124.

    Google Scholar

    [81] Shipp W G, Zierenberg R A. Pathways of acid mine drainage to Clear Lake: Implications for mercury cycling[J]. Ecological Applications, 2008, 18(8): A29-A54.

    Google Scholar

    [82] Yucel D S, Balci N, Baba A. Generation of acid mine lakes associated with abandoned coal mines in northwest Turkey[J]. Archives of Environmental Contamination and Toxicology, 2016, 70(4): 757-782. doi: 10.1007/s00244-016-0270-z

    CrossRef Google Scholar

    [83] Holden A A, Haque S E, Mayer K U, et al. Biogeo-chemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: Laboratory studies and reactive transport modeling[J]. Journal of Contaminant Hydrology, 2013, 151(6): 55-67.

    Google Scholar

    [84] Qin H, Hu T, Zhai Y, et al. The improved methods of heavy metals removal by biosorbents: A review[J]. Environmental Pollution, 2020, 258: 113777. doi: 10.1016/j.envpol.2019.113777

    CrossRef Google Scholar

    [85] Manisalidis I, Stavropoulou E, Stavropoulos A, et al. Environmental and health impacts of air pollution: A review[J]. Frontiers in Public Health, 2020, 8: 14. doi: 10.3389/fpubh.2020.00014

    CrossRef Google Scholar

    [86] Jawed A, Saxena V, Pandey L M. Engineered nanomaterials and their surface functionalization for the removal of heavy metals: A review[J]. Journal of Water Process Engineering, 2020, 33: 101009. doi: 10.1016/j.jwpe.2019.101009

    CrossRef Google Scholar

    [87] Elizabeth R C, Balaji A V, Kavitha K K. Bioremediation of heavy metals and toxic chemicals from Muttukadu Lake, Chennai by biosurfactant and biomass treatment strategies[J]. Bioremediation and Green Technologies, 2021: 67-85.

    Google Scholar

    [88] 何玉君, 孙梦荷, 沈亚婷, 等. 超富集植物与重金属相互作用机制及应用研究进展[J]. 岩矿测试, 2020, 39(5): 639-657. doi: 10.15898/j.cnki.11-2131/td.202004140048

    CrossRef Google Scholar

    He Y J, Sun M H, Shen Y T, et al. Research progress on the interaction mechanism and application of super-enriched plants with heavy metals[J]. Rock and Mineral Analysis, 2020, 39(5): 639-657. doi: 10.15898/j.cnki.11-2131/td.202004140048

    CrossRef Google Scholar

    [89] Liu J, Wei X, Zhou Y, et al. Thallium contamination, health risk assessment and source apportionment in common vegetables[J]. Science of the Total Environment, 2020, 703: 135547. doi: 10.1016/j.scitotenv.2019.135547

    CrossRef Google Scholar

    [90] Dunlap C E, Alpers C N, Bouse R, et al. The persistence of lead from past gasoline emissions and mining drainage in a large riparian system: Evidence from lead isotopes in the Sacramento River, California[J]. Geochimica et Cosmochimica Acta, 2008, 72(24): 5935-5948. doi: 10.1016/j.gca.2008.10.006

    CrossRef Google Scholar

    [91] Bird G, Brewer P A, Macklin M G, et al. Quantifying sedi-ment-associated metal dispersal using Pb isotopes: Application of binary and multivariate mixing models at the catchment-scale[J]. Environmental Pollution, 2010, 158: 2158-2169. doi: 10.1016/j.envpol.2010.02.020

    CrossRef Google Scholar

    [92] Lin C Q, Yu R L, Hu G R, et al. Contamination and isotopic composition of Pb and Sr in offshore surface sediments from Jiulong River, southeast China[J]. Environmental Pollution, 2016, 218: 644-650. doi: 10.1016/j.envpol.2016.07.051

    CrossRef Google Scholar

    [93] Monna F, Camizuli E, Revelli P, et al. Wild brown trout affected by historical mining in the Cévennes National Park, France[J]. Environmental Science & Technology, 2011, 45(16): 6823-6830.

    Google Scholar

    [94] Tang L, Zhang Y, Ma S, et al. Potentially toxic element contaminations and lead isotopic fingerprinting in soils and sediments from a historical gold mining site[J]. International Journal of Environmental Research and Public Health, 2021, 18(20): 10925. doi: 10.3390/ijerph182010925

    CrossRef Google Scholar

    [95] 张怡悦. 金/铁矿区土壤-植物体系铅锌同位素特征及微生物演化机制[D]. 北京: 北京科技大学, 2021.

    Google Scholar

    Zhang Y Y. Pb-Zn isotopic characteristics and microbial evolution mechanism of soil-plant system in gold/iron mining area[D]. Beijing: University of Science and Technology Beijing, 2021.

    Google Scholar

    [96] Wen H J, Zhang Y X, Christophe C, et al. Tracing sour-ces of pollution in soils from the Jinding Pb-Zn mining district in China using cadmium and lead isotopes[J]. Applied Geochemistry, 2015, 52: 147-154. doi: 10.1016/j.apgeochem.2014.11.025

    CrossRef Google Scholar

    [97] Wang J, Su J, Li Z, et al. Source apportionment of heavy metal and their health risks in soil-dustfall-plant system nearby a typical non-ferrous metal mining area of Tongling, eastern China[J]. Environmental Pollution, 2019, 254(B): 113089.

    Google Scholar

    [98] Das A, Patel S S, Kumar R, et al. Geochemical sources of metal contamination in a coal mining area in Chhattisgarh, India using lead isotopic ratios[J]. Chemosphere, 2018, 197: 152-164. doi: 10.1016/j.chemosphere.2018.01.016

    CrossRef Google Scholar

    [99] Jeon S R. Hydrochemical, and Pb- and Sr-isotopic constraints on the precipitation and dilution of metals in acidified mine water: An example from the abandoned Dongjin Au-Ag-Cu mine, Korea[J]. Geosciences Journal, 2008, 12(4): 411-418. doi: 10.1007/s12303-008-0040-7

    CrossRef Google Scholar

    [100] 杨文俊, 陈燕玫, 丁铿博, 等. 酸性矿山废水影响下流域地表水中镉稳定同位素的调查研究[C]//中国矿物岩石地球化学学会第15届学术年会论文摘要集(2). 2015: 207.

    Google Scholar

    Yang W J, Chen Y M, Ding K B, et al. Investigation of cadmium stable isotopes in surface waters of watersheds under the influence of acid mine wastewater[C]//Abstracts of the 15th Annual Meeting of the Chinese Society of Mineral and Rock Geochemistry (2). 2015: 207.

    Google Scholar

    [101] Yang W J, Ding K B, Zhang P, et al. Cadmium stable isotope variation in a mountain area impacted by acid mine drainage[J]. Science of the Total Environment, 2019, 646: 696-703. doi: 10.1016/j.scitotenv.2018.07.210

    CrossRef Google Scholar

    [102] Gao B, Liu Y, Sun K, et al. Precise determination of cadmium and lead isotopic compositions in river sediments[J]. Analytica Chimica Acta, 2008, 612(1): 114-120. doi: 10.1016/j.aca.2008.02.020

    CrossRef Google Scholar

    [103] Gao B, Zhou H D, Liang X R, et al. Cd isotopes as a potential source tracer of metal pollution in river sediments[J]. Environmental Pollution, 2013, 181: 340-343. doi: 10.1016/j.envpol.2013.05.048

    CrossRef Google Scholar

    [104] Zhang Y X, Wen H J, Zhu C W, et al. Cd isotope fractionation during simulated and natural weathering[J]. Environmental Pollution, 2016, 216: 9-17. doi: 10.1016/j.envpol.2016.04.060

    CrossRef Google Scholar

    [105] Shiel A E, Weis D, Orians K J. Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining[J]. Science of the Total Environment, 2010, 408: 2357-2368. doi: 10.1016/j.scitotenv.2010.02.016

    CrossRef Google Scholar

    [106] Foucher D, Hintelmann H, Al T A, et al. Mercury isotope fractionation in waters and sediments of the Murray Brook mine watershed (New Brunswick, Canada): Tracing mercury contamination and transformation[J]. Chemical Geology, 2013, 336: 87-95. doi: 10.1016/j.chemgeo.2012.04.014

    CrossRef Google Scholar

    [107] Foucher D, Ogrinc N, Hintelmann H. Tracing mercury contamination from the Idrija mining region (Slovenia) to the gulf of Trieste using Hg isotope ratio measurements[J]. Environmental Science & Technology, 2009, 43(1): 33-39.

    Google Scholar

    [108] Gehrke G E, Blum J D, Marvin-Dipasquale M. Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes[J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 691-705. doi: 10.1016/j.gca.2010.11.012

    CrossRef Google Scholar

    [109] Gehrke G E, Blum J D, Slotton D G, et al. Mercury isotopes link mercury in San Francisco Bay forage fish to surface sediments[J]. Environmental Science & Technology, 2011, 45(4): 1264-1270.

    Google Scholar

    [110] Smith R S, Wiederhold J G, Jew A D, et al. Stable Hg isotope signatures in creek sediments impacted by a former Hg mine[J]. Environmental Science & Technology, 2015, 49(2): 767-776.

    Google Scholar

    [111] Baptista-Salazar C, Hintelmann H, Biester H. Distribution of mercury species and mercury isotope ratios in soils and river suspended matter of a mercury mining area[J]. Environmental Science: Processes & Impacts, 2018, 20(40): 621-631.

    Google Scholar

    [112] Yin R, Feng X, Wang J, et al. Mercury isotope variations between bioavailable mercury fractions and total mercury in mercury contaminated soil in Wanshan mercury mine, SW China[J]. Chemical Geology, 2013, 336: 80-86. doi: 10.1016/j.chemgeo.2012.04.017

    CrossRef Google Scholar

    [113] Yin R, Feng X, Wang J, et al. Mercury speciation and mercury isotope fractionation during ore roasting process and their implication to source identification of downstream sediment in the Wanshan mercury mining area, SW China[J]. Chemical Geology, 2013, 336: 72-79. doi: 10.1016/j.chemgeo.2012.04.030

    CrossRef Google Scholar

    [114] Yin R, Feng X, Meng B. Stable mercury isotope variation in rice plants (Oryza sativa L.) from the Wanshan mercury mining district, SW China[J]. Environmental Science & Technology, 2013, 47: 2238-2245.

    Google Scholar

    [115] Li P, Du B Y, Lanurence M, et al. Mercury isotope signatures of methylmeucury in rice sample from the Wanshan mercury mining aera, China: Environmental implications[J]. Environmental Science & Technology, 2017, 51: 12321-12328.

    Google Scholar

    [116] 宋正城. 我国典型汞排放地区土壤汞污染及来源解析[D]. 贵阳: 贵州大学, 2019.

    Google Scholar

    Song Z C. Analysis of soil mercury pollution and sources in typical mercury-emitting areas in China[D]. Guiyang: Guizhou University, 2019.

    Google Scholar

    [117] 李珊, 李春辉, 梁汉东, 等. 乌达煤田尘土汞溯源分析[J]. 矿业科学学报, 2021, 6(6): 642-650. doi: 10.19606/j.cnki.jmst.2021.06.002

    CrossRef Google Scholar

    Li S, Li C H, Liang H D, et al. Traceability analysis of mercury in dust and soil of Wuda coalfield[J]. Journal of Mining Science, 2021, 6(6): 642-650. doi: 10.19606/j.cnki.jmst.2021.06.002

    CrossRef Google Scholar

    [118] 刘思魁. 顾桥采煤沉陷区表生环境中汞的分布特征及来源示踪研究[D]. 合肥: 安徽大学, 2021.

    Google Scholar

    Liu S K. Distribution characteristics and source tracing of mercury in the epigenetic environment of Guqiao coal mining subsidence area[D]. Hefei: Anhui University, 2021.

    Google Scholar

    [119] Borrok D M, Wanty R B, Ridley W I, et al. Application of iron and zinc isotopes to track the sources and mechanisms of metal loading in a mountain watershed[J]. Applied Geochemistry, 2009, 24(7): 1270-1277. doi: 10.1016/j.apgeochem.2009.03.010

    CrossRef Google Scholar

    [120] Weiss D J, Rausch N, Mason T F D, et al. Atmospheric deposition and isotope biogeochemistry of zinc in ambrotophic peat[J]. Geochimica et Cosmochimica Acta, 2007, 71: 3498-3517. doi: 10.1016/j.gca.2007.04.026

    CrossRef Google Scholar

    [121] Aranda S, Borrok D M, Wanty R B, et al. Zinc isotope investigation of surface and pore waters in a mountain watershed impacted by acid rock drainage[J]. Science of the Total Environment, 2012, 420(10): 202-213.

    Google Scholar

    [122] 余伟河, 于瑞莲, 胡恭任. 铅锌镉同位素在土壤和沉积物重金属污染溯源研究中的应用进展[J]. 有色金属工程, 2012, 2(4): 57-62.

    Google Scholar

    Yu W H, Yu R L, Hu G R. Progress in the application of Pb-Zn-Cd isotopes in the traceability study of heavy metal pollution in soil and sediment[J]. Nonferrous Metal Engineering, 2012, 2(4): 57-62.

    Google Scholar

    [123] 张宏顺, 孟聪申, 孙承业. 铅稳定同位素示踪技术的研究进展[J]. 中国工业医学杂志, 2014, 27(4): 244-247. doi: 10.13631/j.cnki.zggyyx.2014.04.002

    CrossRef Google Scholar

    Zhang H S, Meng C S, Sun C Y. Research progress of lead stable isotope tracing technology[J]. Chinese Journal of Industrial Medicine, 2014, 27(4): 244-247. doi: 10.13631/j.cnki.zggyyx.2014.04.002

    CrossRef Google Scholar

    [124] 徐春霞, 孟郁苗, 黄诚, 等. 汞同位素地球化学研究及其在矿床学中的应用进展[J]. 岩矿测试, 2021, 40(2): 173-186. doi: 10.15898/j.cnki.11-2131/td.202009210125

    CrossRef Google Scholar

    Xu C X, Meng Y M, Huang C, et al. Progress of mercury isotope geochemistry and its application in mineralogy[J]. Rock and Mineral Analysis, 2021, 40(2): 173-186. doi: 10.15898/j.cnki.11-2131/td.202009210125

    CrossRef Google Scholar

    [125] Chapman E C, Capo R C, Stewart B W, et al. Geochemical and strontium isotope characterization of produced waters from Marcellus shale natural gas extraction[J]. Environmental Science & Technology, 2012, 46(6): 3545-3553.

    Google Scholar

    [126] Chapman E C, Capo R C, Stewart B W, et al. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau[J]. Applied Geochemistry, 2013, 31(2): 109-118.

    Google Scholar

    [127] Tanimizu M, Araki Y, Asaka S, et al. Determination of natural isotopic variation in antimony using inductively coupled plasma mass spectrometry for an uncertainty estimation of the standard atomic weight of antimony[J]. Geochemical Journal, 2011, 45: 27-32. doi: 10.2343/geochemj.1.0088

    CrossRef Google Scholar

    [128] Resongles E, Freydier R, Casiot C, et al. Antimony isotopic composition in river waters affected by ancient mining activity[J]. Talanta, 2015, 144: 851-861. doi: 10.1016/j.talanta.2015.07.013

    CrossRef Google Scholar

    [129] Herbert R B Jr, Schippers A. Iron isotope fractionation by biogeochemical processes in mine tailings[J]. Environmental Science & Technology, 2008, 42(4): 1117-1122.

    Google Scholar

    [130] Talavera M O, Ruiz J, Diaz V E, et al. Water-rock-tailings interactions and sources of sulfur and metals in the subtropical mining region of Taxco, Guerrero (southern Mexico): A multi-isotopic approach[J]. Applied Geochemistry, 2016, 66: 73-81. doi: 10.1016/j.apgeochem.2015.12.002

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(4122) PDF downloads(130) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint