Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 2
Article Contents

WANG Weijie, WANG Hongtao. Research Progress on the Ecological Risk Status and Analytical Techniques of Per- and Polyfluoroalkyl Substances[J]. Rock and Mineral Analysis, 2025, 44(2): 174-188. doi: 10.15898/j.ykcs.202412080252
Citation: WANG Weijie, WANG Hongtao. Research Progress on the Ecological Risk Status and Analytical Techniques of Per- and Polyfluoroalkyl Substances[J]. Rock and Mineral Analysis, 2025, 44(2): 174-188. doi: 10.15898/j.ykcs.202412080252

Research Progress on the Ecological Risk Status and Analytical Techniques of Per- and Polyfluoroalkyl Substances

More Information
  • This paper is a review of the current state of pollution and analytical techniques for per- and polyfluoroalkyl substances (PFASs) in various environmental media. PFASs are widely present in soil, water, and the atmosphere, with groundwater pollution being particularly severe. The persistence, mobility, and bioaccumulation of PFASs pose significant challenges for remediation efforts, threatening ecological safety and human health. The complexity of groundwater environments and the diversity of PFASs present challenges for monitoring and remediation. In terms of PFASs detection technologies, significant progress has been made in recent years; the application of high-resolution mass spectrometry (HRMS) has greatly enhanced the sensitivity, accuracy, and resolution of detections, especially with non-targeted screening techniques that can identify new and unknown PFASs. However, current technologies still have limitations, such as the need for improved sensitivity in detecting ultra-low concentrations of PFASs, and the lack of standardized analytical methods restricts the reliability and comparability of data. Future research is recommended to focus on enhancing the sensitivity of PFAS detection technologies, establishing unified analytical standards, and incorporating tools such as artificial intelligence to assist in analysis, in order to effectively address the environmental and health challenges posed by PFAS pollution. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202412080252.

  • 加载中
  • [1] Evich M G, Davis M J B, Mccord J P, et al. Per- and polyfluoroalkyl substances in the environment[J]. Science, 2022, 375: 512−526. doi: 10.1126/science.abg9065

    CrossRef Google Scholar

    [2] Curtzwiler G W, Silva P, Hall A, et al. Significance of perfluoroalkyl substances (PFAS) in food packaging[J]. Integrated Environmental Assessment and Management, 2021, 17(1): 7−12. doi: 10.1002/ieam.4346

    CrossRef Google Scholar

    [3] Janousek R M, Lebertz S, Knepper T P. Previously unidentified sources of perfluoroalkyl and polyfluoroalkyl substances from building materials and industrial fabrics[J]. Environmental Science-Processes & Impacts, 2019, 21: 1936−1945. doi: 10.1039/c9em00091g

    CrossRef Google Scholar

    [4] Li M, Hu J, Cao X, et al. Nontarget analysis combined with TOP assay reveals a significant portion of unknown PFAS precursors in firefighting foams currently used in China[J]. Environmental Science & Technology, 2024, 58: 17104−17113. doi: 10.1021/acs.est.4c07879

    CrossRef Google Scholar

    [5] van Der Veen I, Schellenberger S, Hanning A C, et al. Fate of per- and polyfluoroalkyl substances from durable water-repellent clothing during use[J]. Environmental Science & Technology, 2022, 56: 5886−5897. doi: 10.1021/acs.est.1c07876

    CrossRef Google Scholar

    [6] Cousins I T, Dewitt J C, Gluege J, et al. The high persistence of PFAS is sufficient for their management as a chemical class[J]. Environmental Science-Processes & Impacts, 2020, 22: 2307−2312. doi: 10.1039/d0em00355g

    CrossRef Google Scholar

    [7] 杨朔, 陈辉伦, 盖楠, 等. 北京市大气颗粒物中全氟烷基化合物的粒径分布特征[J]. 岩矿测试, 2018, 37(5): 549−557. doi: 10.15898/j.cnki.11-2131/td.20180620074

    CrossRef Google Scholar

    Yang S, Chen H L, Gai N, et al. Particle size distribution of perfluoroalkyl substances in atmospheric particulate matter in Beijing[J]. Rock and Mineral Analysis, 2018, 37(5): 549−557. doi: 10.15898/j.cnki.11-2131/td.20180620074

    CrossRef Google Scholar

    [8] Tang Z W, Hamid F S, Yusoff I, et al. A review of PFAS research in Asia and occurrence of PFOA and PFOS in groundwater, surface water and coastal water in Asia[J]. Groundwater for Sustainable Development, 2023, 22: 100947. doi: 10.1016/j.gsd.2023.100947

    CrossRef Google Scholar

    [9] 刘浩然, 邢静怡, 任文杰. 中国土壤中全氟和多氟烷基物质的分布、迁移及管控研究进展[J]. 环境科学, 2024, 45(1): 376−385. doi: 10.13227/j.hjkx.202301055

    CrossRef Google Scholar

    Liu H R, Xing J Y, Ren W J. Research progress on distribution, transportation, and control of per- and polyfluoroalkyl substances in Chinese soils[J]. Environmental Science, 2024, 45(1): 376−385. doi: 10.13227/j.hjkx.202301055

    CrossRef Google Scholar

    [10] Ducrocq T, Merel S, Miege C. Review on analytical methods and occurrence of organic contaminants in continental water sediments[J]. Chemosphere, 2024, 365: 143275. doi: 10.1016/j.chemosphere.2024.143275

    CrossRef Google Scholar

    [11] Lyu X, Xiao F, Shen C, et al. Per- and polyfluoroalkyl substances (PFAS) in subsurface environments: Occurrence, fate, transport, and research prospect[J]. Reviews of Geophysics, 2022, 60(3): e2021RG000765. doi: 10.1029/2021RG000765

    CrossRef Google Scholar

    [12] Li H, Dong Q, Zhang M, et al. Transport behavior difference and transport model of long- and short-chain per- and polyfluoroalkyl substances in underground environmental media: A review[J]. Environmental Pollution, 2023, 327: 121579. doi: 10.1016/j.envpol.2023.121579

    CrossRef Google Scholar

    [13] Weber A K, Barber L B, Leblanc D R, et al. Geo-chemical and hydrologic factors controlling subsurface transport of poly- and perfluoroalkyl substances, Cape Cod, Massachusetts[J]. Environmental Science & Technology, 2017, 51(8): 4269−4279. doi: 10.1021/acs.est.6b05573

    CrossRef Google Scholar

    [14] Liu T, Hu L X, Han Y, et al. Non-target discovery and risk prediction of per- and polyfluoroalkyl substances (PFAS) and transformation products in wastewater treatment systems[J]. Journal of Hazardous Materials, 2024, 476: 135081. doi: 10.1016/j.jhazmat.2024.135081

    CrossRef Google Scholar

    [15] Lenka S P, Kah M, Padhye L P. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants[J]. Water Research, 2021, 199: 117187. doi: 10.1016/j.watres.2021.117187

    CrossRef Google Scholar

    [16] Nahar K, Zulkarnain N A, Niven R K. A review of analytical methods and technologies for monitoring per- and polyfluoroalkyl substances (PFAS) in water[J]. Water, 2023, 15(20): 3577. doi: 10.3390/w15203577

    CrossRef Google Scholar

    [17] Ryu H, Li B, de Guise S, et al. Recent progress in the detection of emerging contaminants PFASs[J]. Journal of Hazardous Materials, 2021, 408: 124437. doi: 10.1016/j.jhazmat.2020.124437

    CrossRef Google Scholar

    [18] Clark R B, Dick J E. Towards deployable electrochemical sensors for per- and polyfluoroalkyl substances (PFAS)[J]. Chemical Communications, 2021, 57(66): 8121−8130. doi: 10.1039/d1cc02641k

    CrossRef Google Scholar

    [19] Karbassiyazdi E, Fattahi F, Yousefi N, et al. XGBoost model as an efficient machine learning approach for PFAS removal: Effects of material characteristics and operation conditions[J]. Environmental Research, 2022, 215: 114286. doi: 10.1016/j.envres.2022.114286

    CrossRef Google Scholar

    [20] Manojkumar Y, Pilli S, Rao P V, et al. Sources, occurrence and toxic effects of emerging per- and polyfluoroalkyl substances (PFAS)[J]. Neurotoxicology and Teratology, 2023, 97: 107174. doi: 10.1016/j.ntt.2023.107174

    CrossRef Google Scholar

    [21] Glüge J, Scheringer M, Cousins I T, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS)[J]. Environmental Science-Processes & Impacts, 2020, 22(12): 2345−2373. doi: 10.1039/d0em00291g

    CrossRef Google Scholar

    [22] Helmer R W, Reeves D M, Cassidy D P. Per- and polyfluorinated alkyl substances (PFAS) cycling within Michigan: Contaminated sites, landfills and wastewater treatment plants[J]. Water Research, 2022, 210: 117983. doi: 10.1016/j.watres.2021.117983

    CrossRef Google Scholar

    [23] Hu X D C, Andrews D Q, Lindstrom A B, et al. Detection of poly- and perfluoroalkyl substances (PFASs) in US drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants[J]. Environmental Science & Technology Letters, 2016, 3(10): 344−3450. doi: 10.1021/acs.estlett.6b00260

    CrossRef Google Scholar

    [24] Nguyen H T, Mclachlan M S, Tscharke B, et al. Background release and potential point sources of per- and polyfluoroalkyl substances to municipal wastewater treatment plants across Australia[J]. Chemosphere, 2022, 293: 133657. doi: 10.1016/j.chemosphere.2022.133657

    CrossRef Google Scholar

    [25] Chen H, Peng H, Yang M, et al. Detection, occurrence, and fate of fluorotelomer alcohols in municipal wastewater treatment plants[J]. Environmental Science & Technology, 2017, 51(16): 8953−8961. doi: 10.1021/acs.est.7b00315

    CrossRef Google Scholar

    [26] Zhang L L, Lee L S, Niu J F, et al. Kinetic analysis of aerobic biotransformation pathways of a perfluorooctane sulfonate (PFOS) precursor in distinctly different soils[J]. Environmental Pollution, 2017, 229: 159−167. doi: 10.1016/j.envpol.2017.05.074

    CrossRef Google Scholar

    [27] Amen R, Ibrahim A, Shafqat W, et al. A critical review on PFAS removal from water: Removal mechanism and future challenges[J]. Sustainability, 2023, 15(23): 16173. doi: 10.3390/su152316173

    CrossRef Google Scholar

    [28] Sima M W, Jaffé P R. A critical review of modeling poly- and perfluoroalkyl substances (PFAS) in the soil-water environment[J]. Science of the Total Environment, 2021, 757: 143793. doi: 10.1016/j.scitotenv.2020.143793

    CrossRef Google Scholar

    [29] Ivantsova E, Lu A, Martyniuk C J. Occurrence and toxicity mechanisms of perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS) in fish[J]. Chemosphere, 2024, 349: 140815. doi: 10.1016/j.chemosphere.2023.140815

    CrossRef Google Scholar

    [30] Ma T, Ye C, Wang T, et al. Toxicity of per- and polyfluoroalkyl substances to aquatic invertebrates, planktons, and microorganisms[J]. International Journal of Environmental Research and Public Health, 2022, 19(24): 16729. doi: 10.3390/ijerph192416729

    CrossRef Google Scholar

    [31] Ghisi R, Vamerali T, Manzetti S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review[J]. Environmental Research, 2019, 169: 326−341. doi: 10.1016/j.envres.2018.10.023

    CrossRef Google Scholar

    [32] Brennan N M, Evans A T, Fritz M K, et al. Trends in the regulation of per- and polyfluoroalkyl substances (PFAS): A scoping review[J]. International Journal of Environmental Research and Public Health, 2021, 18(20): 10900. doi: 10.3390/ijerph182010900

    CrossRef Google Scholar

    [33] Liu L P, Yan P X, Liu X, et al. Profiles and transplacental transfer of per- and polyfluoroalkyl substances in maternal and umbilical cord blood: A birth cohort study in Zhoushan, Zhejiang Province, China[J]. Journal of Hazardous Materials, 2024, 466: 133501. doi: 10.1016/j.jhazmat.2024.133501

    CrossRef Google Scholar

    [34] 张善宇, 姚谦, 施蓉, 等. 全氟与多氟烷基物质的生殖毒性研究进展[J]. 环境与职业医学, 2021, 38(10): 1161−1168. doi: 10.13213/j.cnki.jeom.2021.21082

    CrossRef Google Scholar

    Zhang S Y, Yao Q, Shi R, et al. Research progress on reproductive toxicity of per- and polyfluoroalkyl substances[J]. Journal of Environmental and Occupational Medicine, 2021, 38(10): 1161−1168. doi: 10.13213/j.cnki.jeom.2021.21082

    CrossRef Google Scholar

    [35] Niu Z P, Duan Z Z, He W X, et al. Kidney function decline mediates the adverse effects of per- and poly-fluoroalkyl substances (PFAS) on uric acid levels and hyperuricemia risk[J]. Journal of Hazardous Materials, 2024, 471: 134312. doi: 10.1016/j.jhazmat.2024.134312

    CrossRef Google Scholar

    [36] Wen Z J, Wei Y J, Zhang Y F, et al. A review of cardiovascular effects and underlying mechanisms of legacy and emerging per- and polyfluoroalkyl substances (PFAS)[J]. Archives of Toxicology, 2023, 97(5): 1195−1245. doi: 10.1007/s00204-023-03477-5

    CrossRef Google Scholar

    [37] 游潆茜, 冯越, 付铭, 等. 全氟化合物暴露与中老年女性血脂水平的关联[J]. 环境与职业医学, 2024, 41(6): 593−600. doi: 10.11836/JEOM23387

    CrossRef Google Scholar

    You Y Q, Feng Y, Fu M, et al. Asso ciations of per- and poly-fluoroalkyl substances exposure with blood lipids in middle-aged and elderly women[J]. Journal of Environmental and Occupational Medicine, 2024, 41(6): 593−600. doi: 10.11836/JEOM23387

    CrossRef Google Scholar

    [38] Podder A, Sadmani A, Reinhart D, et al. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects[J]. Journal of Hazardous Materials, 2021, 419: 126361. doi: 10.1016/j.jhazmat.2021.126361

    CrossRef Google Scholar

    [39] 陈典, 张照荷, 赵微, 等. 北京市再生水灌区地下水中典型全氟化合物的分布现状及生态风险[J]. 岩矿测试, 2022, 41(3): 499−510. doi: 10.15898/j.cnki.11-2131/td.202111300190

    CrossRef Google Scholar

    Chen D, Zhang Z H, Zhao W, et al. The occurrence, distribution and risk assessment of typical perfluorinated compounds in groundwater from a reclaimed wastewater irrigation area in Beijing[J]. Rock and Mineral Analysis, 2022, 41(3): 499−510. doi: 10.15898/j.cnki.11-2131/td.202111300190

    CrossRef Google Scholar

    [40] Wee S Y, Aris A Z. Revisiting the “forever chemicals”, PFOA and PFOS exposure in drinking water[J]. NPJ Clean Water, 2023, 6(1): 57. doi: 10.1038/s41545-023-00274-6

    CrossRef Google Scholar

    [41] Pétré M A, Genereux D P, Koropeckyj-Cox L, et al. Per- and polyfluoroalkyl substance (PFAS) transport from groundwater to streams near a PFAS manufacturing facility in North Carolina, USA[J]. Environmental Science & Technology, 2021, 55(9): 5848−5856. doi: 10.1021/acs.est.0c07978

    CrossRef Google Scholar

    [42] Ng K, Alygizakis N, Androulakakis A, et al. Target and suspect screening of 4777 per- and polyfluoroalkyl substances (PFAS) in river water, wastewater, groundwater and biota samples in the Danube River Basin[J]. Journal of Hazardous Materials, 2022, 436: 129276. doi: 10.1016/j.jhazmat.2022.129276

    CrossRef Google Scholar

    [43] Neuwald I J, Hübner D, Wiegand H L, et al. Ultra-short-chain PFASs in the sources of German drinking water: Prevalent, overlooked, difficult to remove, and unregulated[J]. Environmental Science & Technology, 2022, 56(10): 6380−6390. doi: 10.1021/acs.est.1c07949

    CrossRef Google Scholar

    [44] Mueller V, Kindness A, Feldmann J. Fluorine mass balance analysis of PFAS in communal waters at a wastewater plant from Austria[J]. Water Research, 2023, 244: 120501. doi: 10.1016/j.watres.2023.120501

    CrossRef Google Scholar

    [45] Joerss H, Xie Z Y, Wagner C C, et al. Transport of legacy perfluoroalkyl substances and the replacement compound HFPO-DA through the Atlantic Gateway to the Arctic Ocean—Is the Arctic a sink or a source?[J]. Environmental Science & Technology, 2020, 54(16): 9958−9967. doi: 10.1021/acs.est.0c00228

    CrossRef Google Scholar

    [46] Crone B C, Speth T F, Wahman D G, et al. Occurrence of per- and polyfluoroalkyl substances (PFAS) in source water and their treatment in drinking water[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(24): 2359−2396. doi: 10.1080/10643389.2019.1614848

    CrossRef Google Scholar

    [47] Wang X, Zhang H, He X, et al. Contamination of per- and polyfluoroalkyl substances in the water source from a typical agricultural area in North China[J]. Frontiers in Environmental Science, 2023, 10: 1071134. doi: 10.3389/fenvs.2022.1071134

    CrossRef Google Scholar

    [48] Liu T, Hu L X, Han Y, et al. Non-target and target screening of per- and polyfluoroalkyl substances in landfill leachate and impact on groundwater in Guangzhou, China[J]. Science of the Total Environment, 2022, 844: 157021. doi: 10.1016/j.scitotenv.2022.157021

    CrossRef Google Scholar

    [49] Lu G H, Shao P W, Zheng Y, et al. Perfluoroalkyl substances (PFASs) in rivers and drinking waters from Qingdao, China[J]. International Journal of Environmental Research and Public Health, 2022, 19(9): 5722. doi: 10.3390/ijerph19095722

    CrossRef Google Scholar

    [50] Mcmahon P B, Tokranov A K, Bexfield L M, et al. Perfluoroalkyl and polyfluoroalkyl substances in groundwater used as a source of drinking water in the eastern United States[J]. Environmental Science & Technology, 2022, 56(4): 2279−2288. doi: 10.1021/acs.est.1c04795

    CrossRef Google Scholar

    [51] Mussabek D, Söderman A, Imura T, et al. PFAS in the drinking water source: Analysis of the contamination levels, origin and emission rates[J]. Water, 2023, 15(1): 137. doi: 10.3390/w15010137

    CrossRef Google Scholar

    [52] Yong Z Y, Kim K Y, Oh J E. The occurrence and distributions of per- and polyfluoroalkyl substances (PFAS) in groundwater after a PFAS leakage incident in 2018[J]. Environmental Pollution, 2021, 268: 115395. doi: 10.1016/j.envpol.2020.115395

    CrossRef Google Scholar

    [53] Munoz G, Labadie P, Botta F, et al. Occurrence survey and spatial distribution of perfluoroalkyl and polyfluoroalkyl surfactants in groundwater, surface water, and sediments from tropical environments[J]. Science of the Total Environment, 2017, 607: 243−252. doi: 10.1016/j.scitotenv.2017.06.146

    CrossRef Google Scholar

    [54] Dvorakova D, Jurikova M, Svobodova V, et al. Complex monitoring of perfluoroalkyl substances (PFAS) from tap drinking water in the Czech Republic[J]. Water Research, 2023, 247: 120764. doi: 10.1016/j.watres.2023.120764

    CrossRef Google Scholar

    [55] Stefano P H P, Roisenberg A, Acayaba R D, et al. Occurrence and distribution of per- and polyfluoroalkyl substances (PFAS) in surface and groundwaters in an urbanized and agricultural area, southern Brazil[J]. Environmental Science and Pollution Research, 2023, 30(3): 6159−6169. doi: 10.1007/s11356-022-22603-x

    CrossRef Google Scholar

    [56] Xiao F. Emerging poly- and perfluoroalkyl substances in the aquatic environment: A review of current literature[J]. Water Research, 2017, 124: 482−495. doi: 10.1016/j.watres.2017.07.024

    CrossRef Google Scholar

    [57] Strynar M J, Lindstrom A B, Nakayama S F, et al. Pilot scale application of a method for the analysis of perfluorinated compounds in surface soils[J]. Chemosphere, 2012, 86(3): 252−257. doi: 10.1016/j.chemosphere.2011.09.036

    CrossRef Google Scholar

    [58] Dauchy X, Boiteux V, Colin A, et al. Deep seepage of per- and polyfluoroalkyl substances through the soil of a firefighter training site and subsequent groundwater contamination[J]. Chemosphere, 2019, 214: 729−737. doi: 10.1016/j.chemosphere.2018.10.003

    CrossRef Google Scholar

    [59] Qi Y, Cao H, Pan W, et al. The role of dissolved organic matter during per- and polyfluorinated substance (PFAS) adsorption, degradation, and plant uptake: A review[J]. Journal of Hazardous Materials, 2022, 436: 129139. doi: 10.1016/j.jhazmat.2022.129139

    CrossRef Google Scholar

    [60] Cai W, Navarro D A, Du J, et al. Increasing ionic strength and valency of cations enhance sorption through hydrophobic interactions of PFAS with soil surfaces[J]. Science of the Total Environment, 2022, 817: 152975. doi: 10.1016/j.scitotenv.2022.152975

    CrossRef Google Scholar

    [61] Zhang W, Ma L, Chen S, et al. Effects of temperature, relative humidity and soil organic carbon content on soil-air partitioning coefficients of volatile PFAS[J]. The Science of the Total Environment, 2024, 955: 176987. doi: 10.1016/j.scitotenv.2024.176987

    CrossRef Google Scholar

    [62] Li H, Koosaletse-Mswela P. Occurrence, fate, and remediation of per- and polyfluoroalkyl substances in soils: A review[J]. Current Opinion in Environmental Science & Health, 2023, 34: 100487. doi: 10.1016/j.coesh.2023.100487

    CrossRef Google Scholar

    [63] Lohmann R, Abass K, Bonefeld-Jorgensen E C, et al. Cross-cutting studies of per- and polyfluorinated alkyl substances (PFAS) in Arctic wildlife and humans[J]. Science of the Total Environment, 2024, 954: 176274. doi: 10.1016/j.scitotenv.2024.176274

    CrossRef Google Scholar

    [64] Wu J, Fang G, Wang X, et al. Occurrence, partitioning and transport of perfluoroalkyl acids in gas and particles from the southeast coastal and mountainous areas of China[J]. Environmental Science and Pollution Research, 2023, 30(12): 32790−32798. doi: 10.1007/s11356-022-24468-6

    CrossRef Google Scholar

    [65] Li X, Wang Y, Cui J, et al. Occurrence and fate of per- and polyfluoroalkyl substances (PFAS) in atmosphere: Size-dependent gas-particle partitioning, precipitation scavenging, and amplification[J]. Environmental Science & Technology, 2024, 58(21): 9283−9291. doi: 10.1021/acs.est.4c00569

    CrossRef Google Scholar

    [66] Wang B, Yao Y, Chen H, et al. Per- and polyfluoroalkyl substances and the contribution of unknown precursors and short-chain (C2−C3) perfluoroalkyl carboxylic acids at solid waste disposal facilities[J]. Science of the Total Environment, 2020, 705: 135832. doi: 10.1016/j.scitotenv.2019.135832

    CrossRef Google Scholar

    [67] Gonzalez-Barreiro C, Martinez-Carballo E, Sitka A, et al. Method optimization for determination of selected perfluorinated alkylated substances in water samples[J]. Analytical and Bioanalytical Chemistry, 2006, 386(7−8): 2123−2132. doi: 10.1007/s00216-006-0902-7

    CrossRef Google Scholar

    [68] Yu N Y, Guo H W, Yang J P, et al. Non-target and suspect screening of per- and polyfluoroalkyl substances in airborne particulate matter in China[J]. Environmental Science & Technology, 2018, 52(15): 8205−8214. doi: 10.1021/acs.est.8b02492

    CrossRef Google Scholar

    [69] Qiao B, Song D, Fang B, et al. Nontarget screening and fate of emerging per- and polyfluoroalkyl substances in wastewater treatment plants in Tianjin, China[J]. Environmental Science & Technology, 2023, 57(48): 20127−20137. doi: 10.1021/acs.est.3c03997

    CrossRef Google Scholar

    [70] Diao J, Chen Z, Wang T, et al. Perfluoroalkyl substances in marine food webs from South China Sea: Trophic transfer and human exposure implication[J]. Journal of Hazardous Materials, 2022, 431: 128602. doi: 10.1016/j.jhazmat.2022.128602

    CrossRef Google Scholar

    [71] Munoz G, Michaud A M, Liu M, et al. Target and nontarget screening of PFAS in biosolids, composts, and other organic waste products for land application in France[J]. Environmental Science & Technology, 2022, 56(10): 6056−6068. doi: 10.1021/acs.est.1c03697

    CrossRef Google Scholar

    [72] Dhiman S, Ansari N G. A review on extraction, analytical and rapid detection techniques of per/poly fluoro alkyl substances in different matrices[J]. Microchemical Journal, 2024, 196: 109667. doi: 10.1016/j.microc.2023.109667

    CrossRef Google Scholar

    [73] Janda J, Nödler K, Brauch H J, et al. Robust trace analysis of polar (C2-C8) perfluorinated carboxylic acids by liquid chromatography-tandem mass spectrometry: Method development and application to surface water, groundwater and drinking water[J]. Environmental Science and Pollution Research, 2019, 26(8): 7326−7336. doi: 10.1007/s11356-018-1731-x

    CrossRef Google Scholar

    [74] Brumovsky M, Becanova J, Karaskova P, et al. Retention performance of three widely used SPE sorbents for the extraction of perfluoroalkyl substances from seawater[J]. Chemosphere, 2018, 193: 259−269. doi: 10.1016/j.chemosphere.2017.10.174

    CrossRef Google Scholar

    [75] Groffen T, Bervoets L, Jeong Y, et al. A rapid method for the detection and quantification of legacy and emerging per- and polyfluoroalkyl substances (PFAS) in bird feathers using UPLC-MS/MS[J]. Journal of Chromatography B—Analytical Technologies in the Biomedical and Life Sciences, 2021, 1172: 122653. doi: 10.1016/j.jchromb.2021.122653

    CrossRef Google Scholar

    [76] Shen Y, Wang L, Ding Y, et al. Trends in the analysis and exploration of per- and polyfluoroalkyl substances (PFAS) in environmental matrices: A review[J]. Critical Reviews in Analytical Chemistry, 2024, 54: 3171−3195. doi: 10.1080/10408347.2023.2231535

    CrossRef Google Scholar

    [77] Karaskova P, Codling G, Melymuk L, et al. A critical assessment of passive air samplers for per- and polyfluoroalkyl substances[J]. Atmospheric Environment, 2018, 185: 186−195. doi: 10.1016/j.atmosenv.2018.05.030

    CrossRef Google Scholar

    [78] Ahrens L, Shoeib M, Harner T, et al. Comparison of annular diffusion denuder and high volume air samplers for measuring per- and polyfluoroalkyl substances in the atmosphere[J]. Analytical Chemistry, 2011, 83(24): 9622−9628. doi: 10.1021/ac202414w

    CrossRef Google Scholar

    [79] Padilla-Sánchez J A, Papadopoulou E, Poothong S, et al. Investigation of the best approach for assessing human exposure to poly- and perfluoroalkyl substances through indoor air[J]. Environmental Science & Technology, 2017, 51(21): 12836−12843. doi: 10.1021/acs.est.7b03516

    CrossRef Google Scholar

    [80] Yao Y M, Zhao Y Y, Sun H W, et al. Per- and polyfluoroalkyl substances (PFASs) in indoor air and dust from homes and various microenvironments in China: Implications for human exposure[J]. Environmental Science & Technology, 2018, 52(5): 3156−3166. doi: 10.1021/acs.est.7b04971

    CrossRef Google Scholar

    [81] Kirkwood-Donelson K I, Dodds J N, Schnetzer A, et al. Uncovering per- and polyfluoroalkyl substances (PFAS) with nontargeted ion mobility spectrometry-mass spectrometry analyses[J]. Science Advances, 2023, 9(43): eadj7048. doi: 10.1126/sciadv.adj7048

    CrossRef Google Scholar

    [82] Rodowa A E, Christie E, Sedlak J, et al. Field sampling materials unlikely source of contamination for perfluoroalkyl and polyfluoroalkyl substances in field samples[J]. Environmental Science & Technology Letters, 2020, 7(3): 156−163. doi: 10.1021/acs.estlett.0c00036

    CrossRef Google Scholar

    [83] Winchell L J, Wells M J M, Ross J J, et al. Analyses of per- and polyfluoroalkyl substances (PFAS) through the urban water cycle: Toward achieving an integrated analytical workflow across aqueous, solid, and gaseous matrices in water and wastewater treatment[J]. Science of the Total Environment, 2021, 774: 145257. doi: 10.1016/j.scitotenv.2021.145257

    CrossRef Google Scholar

    [84] Liu Y, D’agostino L A, Qu G, et al. High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples[J]. TrAC-Trends in Analytical Chemistry, 2019, 121: 115420. doi: 10.1016/j.trac.2019.02.021

    CrossRef Google Scholar

    [85] Casey J S, Jackson S R, Ryan J, et al. The use of gas chromatography-high resolution mass spectrometry for suspect screening and non-targeted analysis of per- and polyfluoroalkyl substances[J]. Journal of Chromatography A, 2023, 1693: 463884. doi: 10.1016/j.chroma.2023.463884

    CrossRef Google Scholar

    [86] 于开宁, 王润忠, 刘丹丹. 水环境中新污染物快速检测技术研究进展[J]. 岩矿测试, 2023, 42(6): 1063−1077. doi: 10.15898/j.ykcs.202302080018

    CrossRef Google Scholar

    Yu K N, Wang R Z, Liu D D. A review of rapid detections for emerging contaminants in groundwater[J]. Rock and Mineral Analysis, 2023, 42(6): 1063−1077. doi: 10.15898/j.ykcs.202302080018

    CrossRef Google Scholar

    [87] Clark R B, Dick J E. Electrochemical sensing of perfluorooctanesulfonate (PFOS) using ambient oxygen in river water[J]. ACS Sensors, 2020, 5(11): 3591−3598. doi: 10.1021/acssensors.0c01894

    CrossRef Google Scholar

    [88] Moro G, Bottari F, Liberi S, et al. Covalent immobilization of delipidated human serum albumin on poly (pyrrole-2-carboxylic) acid film for the impedimetric detection of perfluorooctanoic acid[J]. Bioelectrochemistry, 2020, 134: 107540. doi: 10.1016/j.bioelechem.2020.107540

    CrossRef Google Scholar

    [89] Mcdonnell C, Albarghouthi F M, Selhorst R, et al. Aerosol jet printed surface-enhanced Raman substrates: Application for high-sensitivity detection of perfluoroalkyl substances[J]. ACS Omega, 2023, 8(1): 1597−1605. doi: 10.1021/acsomega.2c07134

    CrossRef Google Scholar

    [90] Dodds J N, Hopkins Z R, Knappe D R U, et al. Rapid characterization of per- and polyfluoroalkyl substances (PFAS) by ion mobility spectrometry-mass spectrometry (IMS-MS)[J]. Analytical Chemistry, 2020, 92(6): 4427−4435. doi: 10.1021/acs.analchem.9b05364

    CrossRef Google Scholar

    [91] Khan R, Uygun Z O, Andreescu D, et al. Sensitive detection of perfluoroalkyl substances using MXene-AgNP-based electrochemical sensors[J]. ACS Sensors, 2024, 9(6): 3403−3412. doi: 10.1021/acssensors.4c00776

    CrossRef Google Scholar

    [92] Lamichhane H B, Arrigan D W M. Electroanalytical chemistry of per- and polyfluoroalkyl substances[J]. Current Opinion in Electrochemistry, 2023, 40: 101309. doi: 10.1016/j.coelec.2023.101309

    CrossRef Google Scholar

    [93] George S, Dixit A. A machine learning approach for prioritizing groundwater testing for per- and polyfluoroalkyl substances (PFAS)[J]. Journal of Environmental Management, 2021, 295: 113359. doi: 10.1016/j.jenvman.2021.113359

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(2)

Article Metrics

Article views(244) PDF downloads(121) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint